scholarly journals First Report of Anthracnose Caused by Colletotrichum tabaci on green pepper (Capsicum annuum) in China

Plant Disease ◽  
2021 ◽  
Author(s):  
Lijuan Wei ◽  
Chengde Yang ◽  
Richard Osei ◽  
Lingxiao Cui ◽  
Mengjun Jin ◽  
...  

Vitamins, capsaicin and capsochrome are abundant in pepper (Capsicum annuum), a fruit that is also used as a spice. During hot and rainy seasons, anthracnose disease caused by Colletotrichum spp. affects pepper crops and causes significant yield losses in the pre- and post-harvest stages(Liu et al. 2016). Unidentified disease spots were discovered on peppers leaves in a field in Wei yuan (35°8'10" N, 104°12'54" E), Gansu Province, China, in September 2019. The diseases was found to have a 100% incidence in a 0.07-ha area, which drew our attention. The lesions were mostly found in the middle and upper parts of the leaves, and the symptoms mostly showed up as roughly circular patches on the leaves with dark brown, and yellowish center. 18 tissues with a diameter of 1 cm were obtained from the line between healthy and diseased portions. They were sterilized for 45 s in 1% mercuric chloride, then rinsed 5 times in sterile distilled water and dried with sterile filter paper. After 4 days of culture on a plate with a PDA media 5 strains were recovered from the treated tissue. Healthy pepper plants grown in the lab were inoculated with conidia suspension (50 mL, 107 conidia/mL) for pathogenicity while sterile distilled water was used as control. Each treatment had three duplicates. Leaves infected with the BYL strain 16 days later showed obvious symptoms, which were comparable to those found in the field. The control leaves showed no sign of disease. The pathogen was re-isolated from the infected pepper leaves and it had the same features as strain BYL. Koch's postulate was proven correct. The BYL colony started out white, then turned gray-brown with black sclerotia in the center. Conidia were hyaline, smooth, cylindrical, typically straight, with rounded ends, and ranged in size from11.754-16.477(14.587±0.139×2.833-4.220(3.348±0.037) μm. Appressoria solitary or in loose clusters, 6.910-9.078×5.386-7.119 μm in size, medium brown, smooth-walled, ellipsoidal or irregular in form, with noticeable piercing pore with dark halo. The isolate was identified as Colletotrichum species based on the morphological characteristics (Damm et al. 2014).It was then re-identified using multi-molecular analysis. To amplify and sequence of the isolates, the genes ITS, TUB2, CHS1, ACT, GAPDH and HIS3 were employed (Weir et al. 2012, Crous et al. 2004). They were deposited in GenBank (MW581857 for ITS, MW595706 for ACT, MW595707 for CHS1, MW595708 for GAPDH, MW595709 for HIS3, and MW595710 for TUB2). The sequence of ITS, ACT, CHS1, and HIS3 in GenBank were found to be 100% identical to those of Colletotrichum tabaci (JQ005763 for ITS, KM105414 for ACT, JQ005784 for CHS1 and KM105346 for HIS3). The primers GAPDH and TUB2 amplified a gene sequence that was 99% identical to Colletotrichum tabaci in GenBank (KM105559 for GAPDH and JQ005847 for TUB2). Based on appearance and sequencing analysis, the isolate was identified as Colletotrichum tabaci. The optimal light condition for BYL growth was 12 h light/12 h dark cycle, temperature 30 o C, pH 8, sucrose as carbon source, and yeast extract as nitrogen source according to the biological features. Colletotrichum tabaci caused anthracnose in peppers in the field. This is the first report of Colletotrichum tabaci causing anthracnose in peppers in China that we are aware of.

Plant Disease ◽  
2021 ◽  
Author(s):  
Fei Xu ◽  
Ruijie Shi ◽  
Jiaojiao Zhang ◽  
Yuli Song ◽  
Lulu Liu ◽  
...  

Microdochium nivale and M. majus not only cause seedling blight of wheat (Triticum aestivum L.) in cold dry soils, but also cause foot rot and ear blight of wheat under favorable conditions (Haigh et al. 2009). In May 2017, 2019, and 2020, a serious foot rot of wheat with an incidence of 92%, 45%, and 51% was observed in the field in Xiangcheng County (33.43° N, 114.84° E), Tanghe County (32.43° N, 112.66° E), and Linzhou City (36.13° N, 113.75° E), Henan Province, respectively. The serious brown lesions of the lower leaf sheaths is visible. The pathogens were isolated from brown leaf sheaths on potato dextrose agar (PDA) after being surface-sterilized (70% EtOH for 30 s followed by 3% NaClO for 1.5 min) and rinsed three times in sterile distilled water. After 5 d, mycelia were transferred to fresh PDA, and nine representative isolates (G17ZK2-1, G17ZK2-2, G17ZK2-3, g19TH10-4, g19TH10-5, g19TH10-6, G20LZ1-6, G20LZ1-7, and G20LZ1-8) were further purified by hyphal tipping. Species were identified based on morphological characteristics, and sequence analysis of partial sequences of the translation elongation factor-1α (TEF), the RNA polymerase II subunit (RPB2) gene and β-tubulin gene (Abdelhalim et al. 2020). Among the nine isolates, six isolates belonged to M. majus, three isolates belonged to M. nivale. Sequences of six isolates M. majus and three isolates M. nivale were deposited in GenBank with accession numbers MW428296-MW428298, MZ734119-MZ734121and MZ734139-MZ734141(TEF), MW384889, MW428291, MW428292, MZ734203-MZ734205 and MZ734161-MZ734163(RPB2), MW428293-MW428295, MZ501004-MZ501006 and MZ501024-MZ501026 (β-tubulin). For all the genes, isolates revealed 98-100% similarity to M. majus and M. nivale accessions, respectively. Microscopy of the six M. majus isolates showed: the conidia were falcate, straight to curved, apex pointed or obtuse to subacute, lacking basal differentiation, with 1 to 6 septa, 3.6 to 5.0 × 15.0 to 30.5 μm (av.= 4.5 × 23.2; n = 60). The three M. nivale isolates showed: the conidia were hyaline, 1 to 3 septa, 2.4 to 4.4 × 11.9 to 26.0 μm (av.= 3.5 × 14.7; n = 60). Perithecia of M. majus are dark brown, globose, and 95.2 to 190.5 × 95.2 to 228.6 μm (av.= 144.4 ×152.5; n = 30). Asci are clavate, and 6.8 to 11.0 ×68.2 to 77.3 μm (av.= 8.6×72.0; n = 30), contain eight ascospores. Mature ascospores are ellipsoidal, and 3.8 to 4.9 ×11.5 to 19.2 μm (av.= 4.0 ×15.2; n = 30), with 1 to 3 septa. These morphological characteristics were consistent with previous descriptions of these two species (Glynn et al. 2005). For pathogenicity tests, mycelia of M. nivale and M. majus was prepared using the modified procedure of Zhang et al. (2015). Two-week-old healthy wheat seedlings (cv. Aikang 58) were inoculated using 1 mL of prepared mycelia to one seedling, which was sprayied on soil. Control seedlings were inoculated with 1 mL distilled water containing 0.2% gelatin. After 10 days under 15/10℃, 16h/8h, all the inoculated plants had developed brown spots; while control plants remained healthy. The pathogens were reisolated from inoculated plants and identified as M. nivale and M. majus based on morphological characteristics and molecular methods described above. Although there are reports of M. majus associated with brown foot rot of wheat in Anhui Province and M. nivale associated with seedling blight of oat in Gansu Province (Chen et al. 2021; Tai et al. 2019). To our knowledge, this is the first report of brown foot rot of wheat caused by M. nivale and M. majus in China.


Plant Disease ◽  
2011 ◽  
Vol 95 (5) ◽  
pp. 616-616 ◽  
Author(s):  
J. Kim ◽  
O. Choi ◽  
J.-H. Kwon

Sweet persimmon (Diospyros kaki L.), a fruit tree in the Ebenaceae, is cultivated widely in Korea and Japan, the leading producers worldwide (2). Sweet persimmon fruit with flyspeck symptoms were collected from orchards in the Jinju area of Korea in November 2010. The fruit had fungal clusters of black, round to ovoid, sclerotium-like fungal bodies with no visible evidence of a mycelial mat. Orchard inspections revealed that disease incidence ranged from 10 to 20% in the surveyed area (approximately 10 ha) in 2010. Flyspeck symptoms were observed on immature and mature fruit. Sweet persimmon fruit peels with flyspeck symptoms were removed, dried, and individual speck lesions transferred to potato dextrose agar (PDA) and cultured at 22°C in the dark. Fungal isolates were obtained from flyspeck colonies on 10 sweet persimmon fruit harvested from each of three orchards. Fungal isolates that grew from the lesions were identified based on a previous description (1). To confirm identity of the causal fungus, the complete internal transcribed spacer (ITS) rDNA sequence of a representative isolate was amplified and sequenced using primers ITS1 and ITS4 (4). The resulting 552-bp sequence was deposited in GenBank (Accession No. HQ698923). Comparison with ITS rDNA sequences showed 100% similarity with a sequence of Zygophiala wisconsinensis Batzer & Crous (GenBank Accession No. AY598855), which infects apple. To fulfill Koch's postulates, mature, intact sweet persimmon fruit were surface sterilized with 70% ethanol and dried. Three fungal isolates from this study were grown on PDA for 1 month. A colonized agar disc (5 mm in diameter) of each isolate was cut from the advancing margin of a colony with a sterilized cork borer, transferred to a 1.5-ml Eppendorf tube, and ground into a suspension of mycelial fragments and conidia in a blender with 1 ml of sterile, distilled water. The inoculum of each isolate was applied by swabbing a sweet persimmon fruit with the suspension. Three sweet persimmon fruit were inoculated per isolate. Three fruit were inoculated similarly with sterile, distilled water as the control treatment. After 1 month of incubation in a moist chamber at 22°C, the same fungal fruiting symptoms were reproduced as observed in the orchards, and the fungus was reisolated from these symptoms, but not from the control fruit, which were asymptomatic. On the basis of morphological characteristics of the fungal colonies, ITS sequence, and pathogenicity to persimmon fruit, the fungus was identified as Z. wisconsinensis (1). Flyspeck is readily isolated from sweet persimmon fruit in Korea and other sweet persimmon growing regions (3). The exposure of fruit to unusual weather conditions in Korea in recent years, including drought, and low-temperature and low-light situations in late spring, which are favorable for flyspeck, might be associated with an increase in occurrence of flyspeck on sweet persimmon fruit in Korea. To our knowledge, this is the first report of Z. wisconsinensis causing flyspeck on sweet persimmon in Korea. References: (1) J. C. Batzer et al. Mycologia 100:246, 2008. (2) FAOSTAT Database. Retrieved from http://faostat.fao.org/ , 2008. (3) H. Nasu and H. Kunoh. Plant Dis. 71:361, 1987. (4) T. J. White et al. Page 315 in: PCR Protocols: A Guide to Methods and Applications. M. A. Innis et al., eds. Academic Press, Inc., New York, 1990.


Plant Disease ◽  
2021 ◽  
Author(s):  
Jiahao Lai ◽  
Guihong Xiong ◽  
Bing Liu ◽  
Weigang Kuang ◽  
Shuilin Song

Blueberry (Vaccinium virgatum), an economically important small fruit crop, is characterized by its highly nutritive compounds and high content and wide diversity of bioactive compounds (Miller et al. 2019). In September 2020, an unknown leaf blight disease was observed on Rabbiteye blueberry at the Agricultural Science and Technology Park of Jiangxi Agricultural University in Nanchang, China (28°45'51"N, 115°50'52"E). Disease surveys were conducted at that time, the results showed that disease incidence was 90% from a sampled population of 100 plants in the field, and this disease had not been found at other cultivation fields in Nanchang. Leaf blight disease on blueberry caused the leaves to shrivel and curl, or even fall off, which hindered floral bud development and subsequent yield potential. Symptoms of the disease initially appeared as irregular brown spots (1 to 7 mm in diameter) on the leaves, subsequently coalescing to form large irregular taupe lesions (4 to 15 mm in diameter) which became curly. As the disease progressed, irregular grey-brown and blighted lesion ran throughout the leaf lamina from leaf tip to entire leaf sheath and finally caused dieback and even shoot blight. To identify the causal agent, 15 small pieces (5 mm2) of symptomatic leaves were excised from the junction of diseased and healthy tissue, surface-sterilized in 75% ethanol solution for 30 sec and 0.1% mercuric chloride solution for 2 min, rinsed three times with sterile distilled water, and then incubated on potato dextrose agar (PDA) at 28°C for 5-7 days in darkness. Five fungal isolates showing similar morphological characteristics were obtained as pure cultures by single-spore isolation. All fungal colonies on PDA were white with sparse creeping hyphae. Pycnidia were spherical, light brown, and produced numerous conidia. Conidia were 10.60 to 20.12 × 1.98 to 3.11 µm (average 15.27 × 2.52 µm, n = 100), fusiform, sickle-shaped, light brown, without septa. Based on morphological characteristics, the fungal isolates were suspected to be Coniella castaneicola (Cui 2015). To further confirm the identity of this putative pathogen, two representative isolates LGZ2 and LGZ3 were selected for molecular identification. The internal transcribed spacer region (ITS) and large subunit (LSU) were amplified and sequenced using primers ITS1/ITS4 (Peever et al. 2004) and LROR/LR7 (Castlebury and Rossman 2002). The sequences of ITS region (GenBank accession nos. MW672530 and MW856809) showed 100% identity with accessions numbers KF564280 (576/576 bp), MW208111 (544/544 bp), MW208112 (544/544 bp) of C. castaneicola. LSU gene sequences (GenBank accession nos. MW856810 to 11) was 99.85% (1324/1326 bp, 1329/1331 bp) identical to the sequences of C. castaneicola (KY473971, KR232683 to 84). Pathogenicity was tested on three blueberry varieties (‘Rabbiteye’, ‘Double Peak’ and ‘Pink Lemonade’), and four healthy young leaves of a potted blueberry of each variety with and without injury were inoculated with 20 μl suspension of prepared spores (106 conidia/mL) derived from 7-day-old cultures of LGZ2, respectively. In addition, four leaves of each variety with and without injury were sprayed with sterile distilled water as a control, respectively. The experiment was repeated three times, and all plants were incubated in a growth chamber (a 12h light and 12h dark period, 25°C, RH greater than 80%). After 4 days, all the inoculated leaves started showing disease symptoms (large irregular grey-brown lesions) as those observed in the field and there was no difference in severity recorded between the blueberry varieties, whereas the control leaves showed no symptoms. The fungus was reisolated from the inoculated leaves and confirmed as C. castaneicola by morphological and molecular identification, fulfilling Koch’s postulates. To our knowledge, this is the first report of C. castaneicola causing leaf blight on blueberries in China. The discovery of this new disease and the identification of the pathogen will provide useful information for developing effective control strategies, reducing economic losses in blueberry production, and promoting the development of the blueberry industry.


Plant Disease ◽  
2012 ◽  
Vol 96 (10) ◽  
pp. 1580-1580
Author(s):  
J. H. Park ◽  
K. S. Han ◽  
J. Y. Kim ◽  
H. D. Shin

Sweet basil, Ocimum basilicum L., is a fragrant herb belonging to the family Lamiaceae. Originated in India 5,000 years ago, sweet basil plays a significant role in diverse cuisines across the world, especially in Asian and Italian cooking. In October 2008, hundreds of plants showing symptoms of leaf spot with nearly 100% incidence were found in polyethylene tunnels at an organic farm in Icheon, Korea. Leaf spots were circular to subcircular, water-soaked, dark brown with grayish center, and reached 10 mm or more in diameter. Diseased leaves defoliated prematurely. The damage purportedly due to this disease has reappeared every year with confirmation of the causal agent made again in 2011. A cercosporoid fungus was consistently associated with disease symptoms. Stromata were brown, consisting of brown cells, and 10 to 40 μm in width. Conidiophores were fasciculate (n = 2 to 10), olivaceous brown, paler upwards, straight to mildly curved, not geniculate in shorter ones or one to two times geniculate in longer ones, 40 to 200 μm long, occasionally reaching up to 350 μm long, 3.5 to 6 μm wide, and two- to six-septate. Conidia were hyaline, acicular to cylindric, straight in shorter ones, flexuous to curved in longer ones, truncate to obconically truncate at the base, three- to 16-septate, and 50 to 300 × 3.5 to 4.5 μm. Morphological characteristics of the fungus were consistent with the previous reports of Cercospora guatemalensis A.S. Mull. & Chupp (1,3). Voucher specimens were housed at Korea University herbarium (KUS). An isolate from KUS-F23757 was deposited in the Korean Agricultural Culture Collection (Accession No. KACC43980). Fungal DNA was extracted with DNeasy Plant Mini DNA Extraction Kits (Qiagen Inc., Valencia, CA). The complete internal transcribed spacer (ITS) region of rDNA was amplified with the primers ITS1/ITS4 and sequenced. The resulting sequence of 548 bp was deposited in GenBank (Accession No. JQ995781). This showed >99% similarity with sequences of many Cercospora species, indicating their close phylogenetic relationship. Isolate of KACC43980 was used in the pathogenicity tests. Hyphal suspensions were prepared by grinding 3-week-old colonies grown on PDA with distilled water using a mortar and pestle. Five plants were inoculated with hyphal suspensions and five plants were sprayed with sterile distilled water. The plants were covered with plastic bags to maintain a relative humidity of 100% for 24 h and then transferred to a 25 ± 2°C greenhouse with a 12-h photoperiod. Typical symptoms of necrotic spots appeared on the inoculated leaves 6 days after inoculation, and were identical to the ones observed in the field. C. guatemalensis was reisolated from symptomatic leaf tissues, confirming Koch's postulates. No symptoms were observed on control plants. Previously, the disease was reported in Malawi, India, China, and Japan (2,3), but not in Korea. To our knowledge, this is the first report of C. guatemalensis on sweet basil in Korea. Since farming of sweet basil has recently started on a commercial scale in Korea, the disease poses a serious threat to safe production of this herb, especially in organic farming. References: (1) C. Chupp. A Monograph of the Fungus Genus Cercospora. Ithaca, NY, 1953. (2) D. F. Farr and A. Y. Rossman. Fungal Databases. Systematic Mycology & Microbiology Laboratory, ARS, USDA. Retrieved from http://nt.ars-grin.gov/fungaldatabases/ , May 5, 2012. (3) J. Nishikawa et al. J. Gen. Plant Pathol. 68:46, 2002.


Plant Disease ◽  
2011 ◽  
Vol 95 (7) ◽  
pp. 874-874 ◽  
Author(s):  
Y. M. Shen ◽  
C. H. Chao ◽  
H. L. Liu

Gynura bicolor (Roxb. ex Willd.) DC., known as Okinawa spinach or hong-feng-cai, is a commonly consumed vegetable in Asian countries. In May 2010, plants with blight and wilt symptoms were observed in commercial vegetable farms in Changhua, Taiwan. Light brown-to-black blight lesions developed from the top of the stems to the petioles and extended to the base of the leaves. Severely infected plants declined and eventually died. Disease incidence was approximately 20%. Samples of symptomatic tissues were surface sterilized in 0.6% NaOCl and plated on water agar. A Phytophthora sp. was consistently isolated and further plated on 10% unclarified V8 juice agar, with daily radial growths of 7.6, 8.6, 5.7, and 2.4 mm at 25, 30, 35, and 37°C, respectively. Four replicates were measured for each temperature. No hyphal growth was observed at 39°C. Intercalary hyphal swellings and proliferating sporangia were produced in culture plates flooded with sterile distilled water. Sporangia were nonpapillate, obpyriform to ellipsoid, base tapered or rounded, and 43.3 (27.5 to 59.3) × 27.6 (18.5 to 36.3) μm. Clamydospores and oospores were not observed. Oospores were present in dual cultures with an isolate of P. nicotianae (p731) (1) A2 mating type, indicating that the isolate was heterothallic. A portion of the internal transcribed spacer sequence was deposited in GenBank (Accession No. HQ717146). The sequence was 99% identical to that of P. drechsleri SCRP232 (ATCC46724) (3), a type isolate of the species. The pathogen was identified as P. drechsleri Tucker based on temperature growth, morphological characteristics, and ITS sequence homology (3). To evaluate pathogenicity, the isolated P. drechsleri was inoculated on greenhouse-potted G. bicolor plants. Inoculum was obtained by grinding two dishes of the pathogen cultured on potato dextrose agar (PDA) with sterile distilled water in a blender. After filtering through a gauze layer, the filtrate was aliquoted to 240 ml. The inoculum (approximately 180 sporangia/ml) was sprayed on 24 plants of G. bicolor. An equal number of plants treated with sterile PDA processed in the same way served as controls. After 1 week, incubation at an average temperature of 29°C, blight and wilt symptoms similar to those observed in the fields appeared on 12 inoculated plants. The pathogen was reisolated from the lesions of diseased stems and leaves, fulfilling Koch's postulates. The controls remained symptomless. The pathogenicity test was repeated once with similar results. G. bicolor in Taiwan has been recorded to be infected by P. cryptogea (1,2), a species that resembles P. drechsleri. The recorded isolates of P. cryptogea did not have a maximal growth temperature at or above 35°C (1,2), a distinctive characteristic to discriminate between the two species (3). To our knowledge, this is the first report of P. drechsleri being associated with stem and foliar blight of G. bicolor. References: (1) P. J. Ann. Plant Pathol. Bull. 5:146, 1996. (2) H. H. Ho et al. The Genus Phytophthora in Taiwan. Institute of Botany, Academia Sinica, Taipei, 1995. (3) R. Mostowfizadeh-Ghalamfarsa et al. Fungal Biol. 114:325, 2010.


Plant Disease ◽  
2021 ◽  
Author(s):  
Tao Luo ◽  
Guoqing Li ◽  
Long Yang

Oilseed rape (Brassica napus L.) is one of the most important oilseed crops in China. It is widely cultivated in China, with winter oilseed rape in Yangtze River basin and in southern China, and spring oilseed rape in northern China. In August 2017, a survey for Leptosphaeria spp. on spring oilseed rape was conducted in Minle county, Zhangye city, Gansu Province, China. The symptoms typical of blackleg on basal stems of oilseed rape were observed in the field. A large number of black fruiting bodies (pycnidia) were present on the lesions (Fig. 1A). The disease incidence of basal stem infection in the surveyed field was 19%. A total of 19 diseased stems were collected to isolate the pathogen. After surface sterilizing (75% ethanol for 30 s, 5% NaOCl for 60 s, followed by rinsing in sterilized water three times), diseased tissues were cultured on acidified potato dextrose agar (PDA) plates at 20°C for 7 days. Twelve fungal isolates were obtained. All fungal isolates produced typical tan pigment on PDA medium, and produced pycnidia after two weeks (Fig. 1B). Colony morphological characteristics indicated that these isolates might belong to Leptosphaeria biglobosa. To confirm identification, multiple PCR was conducted using the species-specific primers LmacF, LbigF, LmacR (Liu et al. 2006). Genomic DNA of each isolate was extracted using the cetyltrimethylammonium bromide (CTAB) method. DNA samples of L. maculans isolate UK-1 and L. biglobosa isolate W10 (Cai et al. 2015) were used as references. Only a 444-bp DNA band was detected in all 12 isolates and W10, whereas a 333-bp DNA band was detected only in the UK-1 isolate (Fig. 1C). PCR results suggested that these 12 isolates all belong to L. biglobosa. In addition, the internal transcribed spacer (ITS) region of these 12 isolates was analyzed for subspecies identification (Vincenot et al. 2008). Phylogenetic analysis based on ITS sequence showed that five isolates (Lb1134, Lb1136, Lb1138, Lb1139 and Lb1143) belonged to L. biglobosa ‘brassicae’ (Lbb) with 78% bootstrap support, and the other seven isolates (Lb1135, Lb1137, Lb1140, Lb1141, Lb1142, Lb1144 and Lb1145) belonged to L. biglobosa ‘canadensis’ (Lbc) with 95% bootstrap support (Fig. 1D). Two Lbb isolates (Lb1134 and Lb1136) and two Lbc isolates (Lb1142 and Lb1144) were randomly selected for pathogenicity testing on B. napus cultivar Zhongshuang No. 9 (Wang et al. 2002). Conidial suspensions (10 μL, 1 × 107 conidia mL-1) of these four isolates were inoculated on needle-wounded cotyledons (14-day-old seedling), with 10 cotyledons (20 wounded sites) per isolate. A further 10 wounded cotyledons were inoculated with water and served as controls. Seedlings were maintained in a growth chamber at 20°C with 100% relative humidity and a 12-h photoperiod. After 7 days, cotyledons inoculated with the four isolates showed necrotic lesions in the inoculated wounds. Control cotyledons had no symptoms (Fig. 2). Fungi re-isolated from the infected cotyledons showed similar colony morphology as the original isolates. Therefore, L. biglobosa ‘brassicae’ and L. biglobosa ‘canadensis’ appear to be the pathogens causing the observed blackleg symptoms on spring oilseed rape in Gansu, China. In previous studies, L. biglobosa ‘brassicae’ has been found in many crops in China, including oilseed rape (Liu et al. 2014; Cai et al. 2015), Chinese radish (Raphanus sativus) (Cai et al. 2014a), B. campestris ssp. chinensis var. purpurea (Cai et al. 2014b), broccoli (B. oleracea var. italica) (Luo et al. 2018), ornamental kale (B. oleracea var. acephala) (Zhou et al. 2019a), B. juncea var. multiceps (Zhou et al. 2019b), B. juncea var. tumida (Deng et al. 2020) and Chinese cabbage (B. rapa subsp. pekinensis) (Yu et al. 2021 accepted). To the best of our knowledge, this is the first report of L. biglobosa ‘canadensis’ causing blackleg on B. napus in China.


Plant Disease ◽  
2021 ◽  
Author(s):  
Jiahao Lai ◽  
Tongke Liu ◽  
Bing Liu ◽  
Weigang Kuang ◽  
Shuilin Song

Sweet potato [Ipomoea batatas (L.) Lam], is an extremely versatile vegetable that possesses high nutritional values. It is also a valuable medicinal plant having anti-cancer, antidiabetic, and anti-inflammatory activities. In July 2020, leaf spot was observed on leaves of sweet potato in Nanchang, China (28°45'51"N, 115°50'52"E), which affected the growth and development of the crop and caused tuberous roots yield losses of 25%. The disease incidence (total number of diseased plants / total number of surveyed plants × 100%) was 57% from a sampled population of 100 plants in the field. Symptomatic plants initially exhibited small, light brown, irregular-shaped spots on the leaves, subsequently coalescing to form large irregular brown lesions and some lesions finally fell off. Fifteen small pieces (each 5 mm2) of symptomatic leaves were excised from the junction of diseased and healthy tissue, surface sterilized in 75% ethanol solution for 30 sec and 0.1% mercuric chloride solution for 2 min, rinsed three times with sterile distilled water and incubated on potato dextrose agar (PDA) plates at 28°C in darkness. A total of seven fungal isolates with similar morphological characteristics were obtained as pure cultures by single-spore isolation. After 5 days of cultivation at 28°C, dark brown or blackish green colonies were observed, which developed brown, thick-walled, simple, or branched, and septate conidiophores. Conidia were 18.28 to 24.91 × 7.46 to 11.69 µm (average 21.27 × 9.48 µm, n = 100) in size, straight or slightly curved, middle cell unequally enlarged, brown to dark brown, apical, and basal cells slightly paler than the middle cells, with three septa. Based on morphological characteristics, the fungal isolates were suspected to be Curvularia plantarum (Raza et al. 2019). To further confirm the identification, three isolates (LGZ1, LGZ4 and LGZ5) were selected for molecular identification. The internal transcribed spacer region (ITS), glyceraldehyde-3-phosphate-dehydrogenase (GAPDH), and translation elongation factor 1-alpha (EF1-α) genes were amplified and sequenced using primers ITS1/ITS4 (Peever et al. 2004), gpd1/gpd2 (Berbee et al. 1999), EF-983F/EF-2218R (Rehner and Buckley 2005), respectively. The sequences of ITS region of the three isolates (accession nos. MW581905, MZ209268, and MZ227555) shared 100% identity with those of C. plantarum (accession nos. MT410571-72, MN044754-55). Their GAPDH gene sequences were identical (accession nos. MZ224017-19) and shared 100% identity with C. plantarum (accession nos. MN264120, MT432926, and MN053037-38). Similarly, EF1-α gene sequences were identical (accession nos. MZ224020-22) and had 100% identity with C. plantarum (accession nos. MT628901, MN263982-83). A maximum likelihood phylogenetic tree was built based on concatenated data from the sequences of ITS, GAPDH, and EF-1α by using MEGA 5. The three isolates LGZ1, LGZ4, and LGZ5 clustered with C. plantarum. The fungus was identified as C. plantarum by combining morphological and molecular characteristics. Pathogenicity tests were conducted by inoculating a conidial suspension (106 conidia/ml) on three healthy potted I. batatas plants (five leaves wounded with sterile needle of each potted plant were inoculated). In addition, fifteen wounded leaves of three potted plants were sprayed with sterile distilled water as a control. All plants were maintained in a climate box (12 h light/dark) at 25°C with 80% relative humidity. All the inoculated leaves started showing light brown flecks after 7 days, whereas the control leaves showed no symptoms. The pathogenicity test was conducted three times. The fungus was reisolated from all infected leaves of potted plants and confirmed as C. plantarum by morphological and molecular identification, fulfilling Koch’s postulates. To our knowledge, this is the first report of C. plantarum causing leaf spot on sweet potato in China. The discovery of this new disease and the identification of the pathogen will contribute to the disease management, provide useful information for reducing economic losses caused by C. plantarum, and lay a foundation for the further research of resistance breeding.


Plant Disease ◽  
2020 ◽  
Author(s):  
Xue Li ◽  
Jie Li ◽  
Hua Yong Bai ◽  
Kecheng Xu ◽  
Ruiqi Zhang ◽  
...  

Rubber tree (Hevea brasiliensis (Willd. ex Adr. Juss) Müll. Arg.) is used for the extraction of natural rubber and is an economically and socially important estate crop commodity in many Asian countries such as Indonesia, Malaysia, Thailand, India, Sri Lanka, China and several countries in Africa (Pu et al, 2007). Xishuangbanna City and Wenshan City are the main rubber cultivation areas in Yunnan Province, China. In November 2012, rubber tree showing typical wilt symptoms (Fig. 1 A) and vascular stains (Fig. 1 B) were found in Mengla County, Xishuangbanna City. This disease was destructive in these trees and plant wilt death rate reached 5%. The diseased wood pieces (0.5cm long) from trunk of rubber was surface disinfected with 75% ethanol for 30s and 0.1% mercuric chloride (HgCl2) for 2min, rinsed three times with sterile distilled water, plated onto malt extract agar medium (MEA), and incubated at 28℃. After 7 days, fungal-like filaments were growing from the diseased trunk. Six cultures from 6 rubber trunk were obtained and incubated on MEA at 28℃, after 7 days to observe the cultural features. The mycelium of each culture was white initially on MEA, and then became dark green. Cylindrical endoconidia apices rounded, non-septate, smooth, single or borne in chains (8.9 to 23.6 × 3.81 to 6.3μm) (Fig. 1 C). Chlamydospores (Fig. 1 D) were abundant, thick walled, smooth, forming singly or in chains (11.1 to 19.2 × 9.4 to 12.0μm). The mould fungus was identifed as Chalaropsis based on morphology (Paulin-Mahady et al. 2002). PCR amplification was carried out for 3 isolates, using rDNA internal transcribed spacer (ITS) primer pairs ITS1F and ITS4 (Thorpe et al. 2005). The nucleotide sequences were deposited in the GenBank data base and used in a Blast search of GenBank. Blast analysis of sequenced isolates XJm8-2-6, XJm8-2 and XJm10-2-6 (accessions KJ511486, KJ511487, KJ511489 respectively) had 99% identity to Ch. thielavioides strains hy (KF356186) and C1630 (AF275491). Thus the pathogen was identified as Ch. thielavioides based on morphological characteristics and rDNA-ITS sequence analysis. Pathogenicity test of the isolate (XJm8-2) was conducted on five 1-year-old rubber seedlings. The soil of 5 rubber seedlings was inoculated by drenching with 40 ml spore suspension (106 spores / ml). Five control seedlings were inoculated with 40 ml of sterile distilled water. All the seedlings were maintained in a controlled greenhouse at 25°C and watered weekly. After inoculated 6 weeks, all the seedlings with spore suspension produced wilt symptoms, as disease progressed, inoculated leaves withered (Fig. 1 E) and vascular stains (Fig. 1 F) by 4 months. While control seedlings inoculated with sterile distilled water remained healthy. The pathogen re-isolated from all inoculated symptomatic trunk was identical to the isolates by morphology and ITS analysis. But no pathogen was isolated from the control seedlings. The pathogenicity assay showed that Ch. thielavioides was pathogenic to rubber trees. Blight caused on rubber tree by Ceratocystis fimbriata previously in Brazil (Valdetaro et al. 2015), and wilt by Ch. thielavioides was not reported. The asexual states of most species in Ceratocystis are “chalara” or “thielaviopsis” (de Beer et al. 2014). To our knowledge, this is the first report of this fungus causing wilt of rubber in China. The spread of this disease may pose a threat to rubber production in China.


Plant Disease ◽  
2015 ◽  
Vol 99 (2) ◽  
pp. 287-287 ◽  
Author(s):  
G. Z. Wang ◽  
M. P. Guo ◽  
Y. B. Bian

Coprinus comatus is one of the most commercially important mushrooms in China. Its fruiting body possesses rich nutritional and medicinal value. In November 2013, unusual symptoms were observed on C. comatus on a mushroom farm in Wuhan, Hubei, China. At first, fruiting bodies were covered by white and cobweb-like mycelia. Later, the cap and stipe turned brown or dark before rotting and cracking. The pathogen was isolated from infected tissue of C. comatus. Colonies of the pathogen on potato dextrose agar (PDA) medium first appeared yellowish, followed by an obvious ochraceous or pinkish color. Aerial mycelia grew along the plate wall, cottony, 1 to 4 mm high. Conidiophores were borne on the tops of hyphae, had two to four branches, and were cylindrical, long clavate, or fusiform. Conidia were borne on the tops of the branches of conidiophores, had one to two separates, and were long and clavate. The spores ranged from 15.3 to 22.1 μm long and were 5.1 to 8.3 μm wide, which was consistent with the characteristics of Cladobotryum protrusum (1). The species was identified by ribosomal internal transcribed spacer sequencing. The ribosomal ITS1-5.8S-ITS2 region was amplified from the isolated strain using primers ITS1 and ITS4. A BLAST search in GenBank revealed the highest similarity (99%) to C. protrusum (GenBank Accession Nos. FN859408.1 and FN859413.1). The pathogen was grown on PDA at 25°C for 3 days, and the inoculation suspension was prepared by flooding the agar surface with sterilized double-distilled water for spore suspension (1 × 105 conidia/ml). In one treatment, the suspension was sprayed on casing soil (106 conidia/m2) and mixed thoroughly with it, then cased with treated soil for 2 to 3 cm thickness on the surface of compost in cultivation pots (35 × 25× 12 cm), with sterile distilled water as a control (2). Eight biological replicates were included in this treatment. In the second treatment, mycelia plugs (0.3 × 0.3 cm) without spore production were added to 20 fruiting bodies. Mushrooms treated with blank agar plugs (0.3 × 0.3 cm) were used as a control. The plugs were covered with sterilized cotton balls to avoid loss of moisture. Tested cultivation pots were maintained at 18°C and 85 to 95% relative humidity. In the samples where casing soil was sprayed with conidia suspension, white mildew developed on the pileus, and a young fruiting body grew out from the casing soil. Eventually, the surface of the mushroom was overwhelmed by the mycelia of the pathogen and the pileus turned brown or black. For the other group inoculated with mycelia plugs, only the stipe and pileus inoculated with mycelia turned brown or dark; it rotted and cracked 2 to 3 days later. The symptoms were similar to those observed on the C. comatus cultivation farm. Pathogens re-isolated from pathogenic fruiting bodies were confirmed to be C. protrusum based on morphological characteristics and ITS sequence. To our knowledge, this is the first report of the occurrence of C. protrusum on the edible mushroom C. comatus (3). Based on the pathogenicity test results, C. protrusum has the ability to severely infect the fruiting body of C. comatus. References: (1) K. Põldmaa. Stud. Mycol. 68:1, 2011. (2) F. J. Gea et al. Plant Dis. 96:1067, 2012. (3) W. H. Dong et al. Plant Dis. 97:1507, 2013.


Plant Disease ◽  
2014 ◽  
Vol 98 (2) ◽  
pp. 279-279 ◽  
Author(s):  
J.-H. Wang ◽  
H.-P. Li ◽  
J.-B. Zhang ◽  
B.-T. Wang ◽  
Y.-C. Liao

From September 2009 to October 2012, surveys to determine population structure of Fusarium species on maize were conducted in 22 provinces in China, where the disease incidence ranged from 5 to 20% in individual fields. Maize ears with clear symptoms of Fusarium ear rot (with a white to pink- or salmon-colored mold at the ear tip) were collected from fields. Symptomatic kernels were surface-sterilized (1 min in 0.1% HgCl2, and 30 s in 70% ethanol, followed by three rinses with sterile distilled water), dried, and placed on PDA. After incubation for 3 to 5 days at 28°C in the dark, fungal colonies displaying morphological characteristics of Fusarium spp. (2) were purified by transferring single spores and identified to species level by morphological characteristics (2), and DNA sequence analysis of translation elongation factor-1α (TEF) and β-tubulin genes. A large number of Fusarium species (mainly F. graminearum species complex, F. verticillioides, and F. proliferatum) were identified. These Fusarium species are the main causal agents of maize ear rot (2). Morphological characteristics of six strains from Anhui, Hubei, and Yunnan provinces were found to be identical to those of F. kyushuense (1), which was mixed with other Fusarium species in the natural infection in the field. Colonies grew fast on PDA with reddish-white and floccose mycelia. The average growth rate was 7 to 9 mm per day at 25°C in the dark. Reverse pigmentation was deep red. Microconidia were obovate, ellipsoidal to clavate, and 5.4 to 13.6 (average 8.8) μm in length. Macroconidia were straight or slightly curved, 3- to 5-septate, with a curved and acute apical cell, and 26.0 to 50.3 (average 38.7) μm in length. No chlamydospores were observed. Identity of the fungus was further investigated by sequence comparison of the partial TEF gene (primers EF1/2) and β-tubulin gene (primers T1/22) of one isolate (3). BLASTn analysis of the TEF amplicon (KC964133) and β-tubulin gene (KC964152) obtained with cognate sequences available in GenBank database revealed 99.3 and 99.8% sequence identity, respectively, to F. kyushuense. Pathogenicity tests were conducted twice by injecting 2 ml of a prepared spore suspension (5 × 105 spores/ml) into maize ears (10 per isolate of cv. Zhengdan958) through silk channel 4 days post-silk emergence under field conditions in Wuhan, China. Control plants were inoculated with sterile distilled water. The ears were harvested and evaluated 30 days post-inoculation. Reddish-white mold was observed on inoculated ears and the infected kernels were brown. No symptoms were observed on water controls. Koch's postulates were fulfilled by re-isolating the pathogen from infected kernels. F. kyushuense, first described on wheat in Japan (1), has also been isolated from rice seeds in China (4). It was reported to produce both Type A and Type B trichothecene mycotoxins (1), which cause toxicosis in animals. To our knowledge, this is the first report of F. kyushuense causing maize ear rot in China and this disease could represent a serious risk of yield losses and mycotoxin contamination in maize and other crops. The disease must be considered in existing disease management practices. References: (1) T. Aoki and K. O'Donnell. Mycoscience 39:1, 1998. (2) J. F. Leslie and B. A. Summerell. The Fusarium Laboratory Manual. Blackwell Publishing, Ames, IA, 2006. (3) F. Van Hove et al. Mycologia 103:570, 2011. (4) Z. H. Zhao and G. Z. Lu. Mycotaxon 102:119, 2007.


Sign in / Sign up

Export Citation Format

Share Document