scholarly journals Influence of Harvest Timing, Fungicides, and Beet necrotic yellow vein virus on Sugar Beet Storage

Plant Disease ◽  
2015 ◽  
Vol 99 (10) ◽  
pp. 1296-1309 ◽  
Author(s):  
Carl A. Strausbaugh ◽  
Oliver Neher ◽  
Eugene Rearick ◽  
Imad A. Eujayl

Root rots in sugar beet storage can lead to multimillion dollar losses because of reduced sucrose recovery. Thus, studies were conducted to establish additional fungicide treatments for sugar beet storage and a greater understanding of the fungi involved in the sugar beet storage rot complex in Idaho. A water control treatment and three fungicides (Mertect [product at 0.065 ml/kg of roots; 42.3% thiabendazole {vol/vol}], Propulse [product at 0.049 ml/kg of roots; 17.4% fluopyram and 17.4% prothioconazole {vol/vol}], and Stadium [product at 0.13 ml/kg of roots; 12.51% azoxystrobin, 12.51% fludioxonil, and 9.76% difenoconozole {vol/vol}]) were investigated for the ability to control fungal rots of sugar beet roots held up to 148 days in storage during the 2012 and 2013 storage seasons. At the end of September into October, roots were harvested weekly for 5 weeks from each of two sugar beet fields in Idaho, treated with the appropriate fungicide, and placed on top of a commercial indoor sugar beet storage pile until early February. Differences (P < 0.0001 to 0.0150) among fungicide treatments were evident. Propulse- and Stadium-treated roots had 84 to 100% less fungal growth versus the control roots, whereas fungal growth on Mertect-treated roots was not different from the control roots in 7 of 12 comparisons for roots harvested each of the first 3 weeks in both years of this study. The Propulse- and Stadium-treated roots also reduced (P < 0.0001 to 0.0146; based on weeks 1, 3, and 4 in 2012 and weeks 1, 3, 4, and 5 in 2013) sucrose loss by 14 to 46% versus the control roots, whereas roots treated with Mertect did not change sucrose loss compared with the control roots in 7 of 10 evaluations. The predominant fungi isolated from symptomatic roots were an Athelia-like sp., Botrytis cinerea, Penicillium spp., and Phoma betae. If Propulse and Stadium are labeled for use on sugar beet in storage, these fungicides should be considered for root rot control in commercial sugar beet storage and on roots held for vernalization for seed production of this biennial plant species.

Plant Disease ◽  
2017 ◽  
Vol 101 (10) ◽  
pp. 1781-1787 ◽  
Author(s):  
Carl A. Strausbaugh ◽  
Frank Dugan

Penicillium vulpinum along with a number of other fungi can lead to rot of stored sugar beet roots. However, Penicillium isolates associated with necrotic lesions on roots from a recent sugar beet storage study were determined to be different from P. vulpinum and other recognized Penicillium species. Phylogenies based on sequencing of the internal transcribed spacer (ITS)-5.8S, β-tubulin (BenA), and RNA polymerase II second largest subunit (RPB2) DNA regions indicate that these isolates are novel, but most closely related to the following Penicillium spp. in the section Fasiculata: P. aurantiogriseum, P. camemberti, and P. freii. Macro- and micromorphological data also support designating these isolates as a new species for which we propose the name, Penicillium cellarum sp. nov. Inoculation studies with the P. cellarum isolates on roots of the commercial sugar beet cultivar B-7 led to the formation of necrotic lesions 23 to 25 mm in diameter after 86 days in storage. These lesions were similar to those observed on sugar beet roots in commercial storage piles. These data indicate that P. cellarum is a pathogen which can cause root rot in stored sugar beet roots.


Plant Disease ◽  
2009 ◽  
Vol 93 (6) ◽  
pp. 632-638 ◽  
Author(s):  
Carl A. Strausbaugh ◽  
Imad Eujayl ◽  
Eugene Rearick ◽  
Paul Foote ◽  
Dave Elison

To reduce storage losses and improve resistance to rhizomania caused by Beet necrotic yellow vein virus (BNYVV), studies were initiated to establish a storage cultivar selection program. In 2006 and 2007, 30 or more commercial sugar beet (Beta vulgaris) cultivars were grown in soil naturally infested with BNYVV. At harvest, two root samples from each plot were collected and used to establish percent sugar. Additional samples were placed on top of an indoor pile (set point 1.7°C) and inside an outdoor pile in a randomized complete block design with four replications. After 142 and 159 days in indoor storage, sucrose reduction ranged from 13 to 90% in 2007 and 57 to 100% in 2008. Outdoor storage sucrose reduction ranged from 13 to 32% in 2007 and 28 to 60% in 2008. An average of 31 and 45% of the root surface was covered with fungal growth in 2007 and 2008, respectively. Cultivars that retained the most sucrose had resistance to BNYVV and the least fungal growth and weight loss. Indoor storage with BNYVV-infested roots allowed for the most consistent cultivar separation and will potentially lead to selection of cultivars for improved storability and rhizomania resistance.


2020 ◽  
pp. 674-681
Author(s):  
Rıza Kaya ◽  
Meltem Avan ◽  
Cemre Aksoy ◽  
Fikret Demirci ◽  
Yakup Zekai Katircioğlu ◽  
...  

Sugar beet is extensively grown in Konya province of Turkey and about one third of production of Turkey is obtained from this region. Recently root rots have been observed at all the growth stages of sugar beet especially at later stages near the harvest. During 2015–2017 growing years, 866 fields were visited and diseased samples having root rot symptoms were collected. Various root rot pathogens were isolated from 691 fields; Rhizoctonia solani being the most common (15% of the fields) followed by Fusarium oxysporum, F. solani, Phoma betae, Aphanomyces cochlioides and Pythium spp. Apart from these pathogens, Fusarium culmorum, F. equiseti, F. sambucinum, F. verticillatum, unidentified Fusarium spp., Macrophomina phaseolina and Phytophthora spp. were also determined. All the fungal pathogens were isolated from both of the sugar beet growing stages of 0–12 BBCH and 31–49 BBCH, some of them being high ratios at the late stages. Some isolates of A. cochlioides, P. betae, Pythium spp., Phytophthora spp., and R. solani were highly aggressive when tested by a soil inoculum layer technique. Effects of twelve fungicides, in sixteen different combination and rate, on the most virulant and common four pathogens, A. cochlioides P. betae, Py. ultimum var. ultimum, Rhizoctonia solani, were investigated by the same technique. None of the fungicide mixes inhibited all four pathogens. Thiram + metalaxyl + hymexazol + pyraclastrobin mix sufficiently prevented disease development of the first three pathogens but not R. solani.


Plant Disease ◽  
2013 ◽  
Vol 97 (1) ◽  
pp. 93-100 ◽  
Author(s):  
Carl A. Strausbaugh ◽  
Imad A. Eujayl ◽  
Paul Foote

The Rhizoctonia-bacterial root rot complex continues to be a concerning problem in sugar beet production areas. To investigate resistance to this complex in 26 commercial sugar beet cultivars, field studies and greenhouse studies with mature roots from the field were conducted with Rhizoctonia solani anastomosis group 2-2 IIIB strains and Leuconostoc mesenteroides. Based on means for the 26 cultivars in the 2010 and 2011 field studies, fungal rot ranged from 0 to 8%, bacterial rot ranged from 0 to 37%, total internal rot ranged from 0 to 44%, and surface rot ranged from 0 to 52%. All four rot variables resulted in significant (P < 0.0001) cultivar differences. Based on regression analysis, strong positive relationships (r2 from 0.6628 to 0.9320; P < 0.0001) were present among the rot variables. When ranking cultivars, the most consistent rot variable was surface rot, because 12 of 13 variable–year combinations had significant (P ≤ 0.05) correlations. When cultivar ranking in greenhouse assays was compared, there was frequently a positive correlation with storage data but no relationship with field results. Thus, the greenhouse assays will identify storage rot resistance but field screening will be required to find resistance to this rot complex in the field.


2019 ◽  
pp. 89-92
Author(s):  
Martijn van Overveld ◽  
Martijn Leijdekkers ◽  
Noud van Swaaij

Different seed storage methods, varying in storage temperature, moisture and/or oxygen content, were applied to commercial sugar beet seed lots from four breeding companies. After storage for 10–11 months, germination of the seed was tested in the laboratory (cold test, 10°C). In addition, the contents of active ingredients (fungicides and insecticide) were analyzed and compared with the initial contents before storage. Based on these results, a selection of the most promising storage methods was made to test plant emergence in a field experiment. This research was performed in 2015/16 and in 2016/17. In both years, two storage treatments outperformed the others: these were storage in a closed jar with the addition of moisture absorber (i.e. silica gel) at room temperature and storage at –18°C in a closed plastic bag. Using these two storage methods, seed vigour and contents of active ingredients were comparable to those in seed that had not been stored for one year. Based on the results from this study, the advice to growers for a successful storage of residual sugar beet seed was adjusted in 2017, after including some practical guidelines and considerations.


2018 ◽  
pp. 639-647 ◽  
Author(s):  
Christa Hoffmann

Harvest quality of sugar beet varies according to soil conditions, harvester type and setting, and variety, too. Harvest quality may affect storage losses, in particular when injuries occur. To determine the harvest quality of commercial sugar beet and to quantify resulting storage losses, 92 commercial sugar beet clamps were sampled across Germany and information about harvest conditions were gathered. At IfZ, soil tare, leaf residues, topping diameter, root tip breakage and surface damage of the beets were determined. The beets were stored in 6 replicates in a climate container at 9°C for 10 weeks. The results demonstrate a rather good harvesting quality of sugar beet in Germany. Soil moisture at harvest did not affect harvest quality and storage losses. Very light, but also heavier soils lead to inferior harvest quality (soil tare, root tip breakage, damage) and slightly higher storage losses compared to the typical loam soils. Significant differences occurred between the three harvester types (companies). In general, high root tip breakage and severe surface damage of the beet was related to a high infestation with mould and rots, high invert sugar contents after storage and high sugar losses. Out of the five most planted varieties, in particular one turned out to be very susceptible to damage, resulting in high storage losses. The factor analysis suggests that the effect of harvester / harvester setting and of variety is more important for harvest quality and storage losses of sugar beet than soil conditions at harvest. Therefore, attention should be paid to optimize these conditions.


2021 ◽  
Vol 23 (2) ◽  
pp. 103-109
Author(s):  
Lynda M. Warren

In January 2021 the UK government granted an application for authorisation to use thiamethoxam, a neonicotinoid pesticide, to protect commercial sugar beet crops from attack by viruses transmitted by aphids. This was the first time such an authorisation had been granted in the United Kingdom (UK) and there were concerns that it signalled a weakening of environmental standards now that the UK was no longer part of the European Union. In fact, similar authorisations had been granted by several European Member States in the last 2 years, despite the ban on the use of neonicotinoids introduced in 2018. Nevertheless, the reasons for granting the authorisation do suggest that the balance between adopting a precautionary approach to environmental protection and taking emergency action to protect economic interests may have shifted. It was acknowledged that the proposed mitigation to safeguard bees and other wildlife was not entirely satisfactory. In the end, due to unforeseen weather conditions it meant that the pesticide is not necessary, which in itself demonstrates that short-term emergency measures are unsuitable for dealing with the problem. If the sugar beet industry is to continue to prosper in the UK, it will need to be managed in a way that provides resistance to virus infection without the use of controversial chemicals.


Sign in / Sign up

Export Citation Format

Share Document