scholarly journals Host Preference and Seedborne Transmission of Ditylenchus weischeri and D. dipsaci on Select Pulse and Non-Pulse Crops Grown in the Canadian Prairies

Plant Disease ◽  
2016 ◽  
Vol 100 (6) ◽  
pp. 1087-1092 ◽  
Author(s):  
Abolfazl Hajihassani ◽  
Mario Tenuta ◽  
Robert H. Gulden

The stem nematode Ditylenchus weischeri was recently reported on creeping thistle (Cirsium arvense) in Canada. Two greenhouse studies examined host suitability of crops commonly grown in the Canadian Prairies for D. weischeri and the closely related parasite of many crops, D. dipsaci. In the first study, common pulse crops (yellow pea, chickpea, common bean, and lentil), spring wheat, canola, creeping thistle, and garlic were evaluated. Plant biomass and reproductive factor (Rf = nematode recovered/inoculated) 8 weeks postinoculation were used to determine host suitability. Creeping thistle biomass was reduced by D. weischeri whereas D. dipsaci reduced biomass of four of five pea and two of three bean varieties. Two pea varieties were weak hosts for D. weischeri, with Rf slightly >1. D. weischeri aggressively reproduced on creeping thistle (Rf = 5.4). D. dipsaci reproduced aggressively on garlic (Rf = 6.4; a known host), moderately on pea varieties (Rf > 2), and weakly on chickpea and bean (Rf > 1). In the second study, using creeping thistle and yellow pea, D. weischeri was recovered from aboveground parts of the plants and seed of the former and D. dipsaci from the later. The results show that D. weischeri parasitizes creeping thistle but not other crops and that D. weischeri host preference is different from that of D. dipsaci.

Plants ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 126
Author(s):  
Judit Barroso ◽  
Nicholas G. Genna

Russian thistle (Salsola tragus L.) is a persistent post-harvest issue in the Pacific Northwest (PNW). Farmers need more integrated management strategies to control it. Russian thistle emergence, mortality, plant biomass, seed production, and crop yield were evaluated in spring wheat and spring barley planted in 18- or 36-cm row spacing and seeded at 73 or 140 kg ha−1 in Pendleton and Moro, Oregon, during 2018 and 2019. Russian thistle emergence was lower and mortality was higher in spring barley than in spring wheat. However, little to no effect of row spacing or seeding rate was observed on Russian thistle emergence or mortality. Russian thistle seed production and plant biomass followed crop productivity; higher crop yield produced higher Russian thistle biomass and seed production and lower crop yield produced lower weed biomass and seed production. Crop yield with Russian thistle pressure was improved in 2018 with 18-cm rows or by seeding at 140 kg ha−1 while no effect was observed in 2019. Increasing seeding rates or planting spring crops in narrow rows may be effective at increasing yield in low rainfall years of the PNW, such as in 2018. No effect may be observed in years with higher rainfall than normal, such as in 2019.


Author(s):  
Andrew James Burt ◽  
D.G. Humphreys ◽  
J. Mitchell Fetch ◽  
Denis Green ◽  
Thomas Fetch ◽  
...  

AAC Redstar is an early maturing, high yielding hard red spring wheat (Triticum aestivum L.) cultivar that is well adapted to the northern Canadian Prairies and eligible for grades of Canada Western Red Spring (CWRS) wheat. Over three years (2016-2018) of testing in the Parkland Wheat Cooperative registration trials, AAC Redstar was 11% higher yielding than AC Splendor, 6% higher than Parata, and 4% higher than Glenn and Carberry. AAC Redstar matured 3 days earlier than Glenn, 2 days earlier than Carberry and had similar maturity to Parata. AAC Redstar was shorter than all checks except Carberry and had better lodging resistance compared to all the check cultivars in the registration trial. The test weight and thousand kernel weight of AAC Redstar were similar to Carberry. The grain protein concentration of AAC Redstar was 0.2% lower than Carberry. AAC Redstar was rated moderately resistant to Fusarium head blight, leaf rust, stripe rust and common bunt. AAC Redstar had resistant reactions to loose smut, and stem rust. AAC Redstar was registered under the CWRS market class.


1988 ◽  
Vol 2 (4) ◽  
pp. 445-455 ◽  
Author(s):  
Steven J. Carlson ◽  
William W. Donald

Effects of repeated late-fall applications of the isopropylamine salt of glyphosate at 1.7 kg ae/ha plus 0.5% (v/v) surfactant on adventitious root buds, thickened propagative roots (> 1.3 mm diam), and shoot density of Canada thistle were studied in continuous hard red spring wheat over a 4-yr period. Glyphosate suppressed Canada thistle shoot density more quickly and to a greater extent than thickened root fresh weight or root bud number. A single fall application of glyphosate drastically decreased Canada thistle shoot density for 1 yr after treatment. However, shoot density was the same as the untreated control by 2 yr after a single fall treatment. Two consecutive late-fall applications of glyphosate in 2 yr decreased Canada thistle shoot density 94% in the fall 1 yr after the last treatment. Glyphosate reduced Canada thistle thickened root fresh weight 70% in the first fall 1 yr after a single fall treatment. However, 2 yr after a single fall application of glyphosate, root fresh weight equalled the controls. Two consecutive fall applications of glyphosate reduced thickened root fresh weight 77% 1 yr after the second treatment.


2014 ◽  
Vol 94 (2) ◽  
pp. 223-235 ◽  
Author(s):  
R. Kröbel ◽  
R. Lemke ◽  
C. A. Campbell ◽  
R. Zentner ◽  
B. McConkey ◽  
...  

Kröbel, R., Lemke, R., Campbell, C. A., Zentner, R., McConkey, B., Steppuhn, H., De Jong, R. and Wang, H. 2014. Water use efficiency of spring wheat in the semi-arid Canadian prairies: Effect of legume green manure, type of spring wheat, and cropping frequency. Can. J. Soil Sci. 94: 223–235. In the semi-arid Canadian prairie, water is the main determinant of crop production; thus its efficient use is of major agronomic interest. Previous research in this region has demonstrated that the most meaningful way to measure water use efficiency (WUE) is to use either precipitation use efficiency (PUE) or a modified WUE that accounts for the inefficient use of water in cropping systems that include summer fallow. In this paper, we use these efficiency measures to determine how cropping frequency, inclusion of a legume green manure, and the type of spring wheat [high-yielding Canada Prairie Spring (CPS) vs. Canada Western Red Spring (CWRS)] influence WUE using 25 yr of data (1987–2011) from the “New Rotation” experiment conducted at Swift Current, Saskatchewan. This is a well-fertilized study that uses minimum and no-tillage techniques and snow management to enhance soil water capture. We compare these results to those from a 39-yr “Old Rotation” experiment, also at Swift Current, which uses conventional tillage management. Our results confirmed the positive effect on WUE of cropping intensity, and of CPS wheat compared with CWRS wheat, while demonstrating the negative effect on WUE of a green manure crop in wheat-based rotations in semiarid conditions. Furthermore, we identified a likely advantage of using reduced tillage coupled with water conserving snow management techniques for enhancing the efficiency of water use.


2007 ◽  
Vol 139 (6) ◽  
pp. 850-863 ◽  
Author(s):  
Samuel M. Migui ◽  
Robert J. Lamb

AbstractThe susceptibilities of genetically diverse Canadian spring wheats, Triticum aestivum L. and Triticum durum Desf., to three aphid species, Rhopalosiphum padi (L.), Sitobion avenae (Fabricius), and Schizaphis graminum (Rondani), were investigated. Trophic interactions measured as changes in biomass of aphids and wheat plants were used to quantify levels of resistance, components of resistance, and impact of aphids on yield. Plants in field cages were infested with small numbers of aphids for 21 days at heading. These plants were usually more suitable for the development of S. avenae and S. graminum than of R. padi. Partial resistance, measured as seed production by infested plants as a proportion of that by a control, varied from 11% to 59% for different aphid species and wheat classes when all wheat plants were infested at the same stage. Cultivars within wheat classes responded similarly to each of the aphid species. None of the wheat cultivars showed agriculturally effective levels of antibiosis. The specific impact of each aphid species and wheat class varied from 5 to 15 mg of plant biomass lost for each milligram of biomass gained by the aphids. Canadian Western Red Spring wheat had a lower specific impact and therefore was more tolerant to aphids than the other two classes, but not tolerant enough to avoid economic damage at the aphid densities observed. Plants did not compensate for feeding damage after aphid feeding ceased, based on the higher specific impacts observed for mature plants than for plants that were heading. The interactions between aphids and plants show that current economic thresholds probably underestimate the damage caused by cereal aphids to Canadian spring wheat.


2011 ◽  
Vol 91 (2) ◽  
pp. 305-314 ◽  
Author(s):  
Cody Chytyk ◽  
Pierre Hucl ◽  
Gordon Gray

Chytyk, C. J., Hucl, P. J. and Gray, G. R. 2011. Leaf photosynthetic properties and biomass accumulation of selected western Canadian spring wheat cultivars. Can. J. Plant Sci. 91: 305–314. Current studies indicate wheat straw as a viable source for the production of cellulosic ethanol. Since photosynthetic performance impacts the overall success of the mature plant, this study aimed to measure the photosynthetic vigour of 11 spring wheat cultivars during field development as well as their biomass composition at maturity to determine which would be optimum for ethanol production. All cultivars had similar maximal quantum yields of photosystem II photochemistry (FV/FM), normalized difference vegetation index and biomass composition in the field. However, differences were observed in photosynthetic rate, with McKenzie having the highest light-saturated maximal rate of CO2 uptake (A max) and apparent quantum yield of CO2 uptake (Φapp CO2), while also having the best water use efficiency. Snowbird was found to have the lowest CO2-compensation point (Γ*) and A max. Upon subjecting wheat samples to photoinhibitory conditions, McKenzie and Kyle were found to be the most resistant and susceptible, respectively, with a difference of 11% in FV/FM. Abundance of xanthophyll pigments were not found to be a contributing cause to differential photoinhibitory resistance as there was not a noticeable difference between cultivars. Although some cultivars were found to have enhanced photosynthetic traits over others, these were slight and did not contribute to changes in plant biomass. However, McKenzie did present a higher cellulose content, which would be favourable for ethanol production.


2003 ◽  
Vol 83 (1) ◽  
pp. 75-77 ◽  
Author(s):  
H. H. Mündel ◽  
F. A. Kiehn ◽  
G. Saindon ◽  
H. C. Huang ◽  
R. L. Conner

Alert is a high-yielding, semi-erect great northern common bean (Phaseolus vulgaris L.) cultivar. It was developed from a series of crosses at the Centro Internacional de Agricultura Tropical (CIAT), Cali, Colombia, on contract to the Agriculture and Agri-Food Canada (AAFC) Research Centre, Lethbridge, with cooperation from the AAFC Morden Research Station. Alert is well adapted to the eastern Canadian prairies, yielding significantly higher than the check cultivar, US1140, at 130% in the official Manitoba Dry Bean Co-operative Registration Trials. Alert is moderately resistant to white mold and resistant to races 1 and 15 of bean common mosaic virus (BCMV). It is susceptible to the alpha and alpha Brazil races of anthracnose, but resistant to the delta race. Key words: Common bean, Phaseolus vulgaris, great northern bean, cultivar description, high yield


2004 ◽  
Vol 84 (3) ◽  
pp. 807-809 ◽  
Author(s):  
Hans-Henning Mündel, David Gehl ◽  
Henry C. Huang ◽  
Robert L. Conner

Arikara Yellow is an early-maturing heritage bean (Phaseolus vulgaris L.) cultivar with a tan-yellow seed belonging to the Canario mexicano (syn. Mantequilla) market class. It has a determinate bush type growth habit, with wide adaptation on the Canadian prairies. Arikara Yellow is resistant to white mould caused by Sclerotinia sclerotiorum (Lib.) de Bary and to three of four common races of anthracnose, caused by Colletotrichum lindemuthianum (Sacc. & Magnus) Lams.-Scrib. Key words: Common bean, Phaseolus vulgaris, heritage bean, cultivar description


2005 ◽  
Vol 85 (3) ◽  
pp. 655-658 ◽  
Author(s):  
D. G. Humphreys ◽  
T. F. Townley-Smith ◽  
E. Czarnecki ◽  
S. L. Fox ◽  
P. D. Brown

Glenavon hard red extra strong spring wheat (Triticum aestivum L.) is adapted to the Canadian prairies. It combines 2 to 6% higher grain yield with improved test weight compared to AC Corinne, Glenlea and Wildcat. It is resistant to moderately resistant to prevalent races of leaf and stem rust, resistant to loose smut, and of intermediate resistance to common bunt. Glenavon is eligible for all grades of the Canada Western Extra Strong wheat class. Key words: Triticum aestivum L., Canada Western Extra Strong, hard red extra strong spring wheat, cultivar description, yield, disease resistance


2014 ◽  
Vol 94 (7) ◽  
pp. 1297-1302 ◽  
Author(s):  
D. G. Humphreys ◽  
T. F. Townley-Smith ◽  
O. M. Lukow ◽  
B. D. McCallum ◽  
T. G. Fetch ◽  
...  

Humphreys, D. G., Townley-Smith, T. F., Lukow, O. M., McCallum, B. D., Fetch, T. G., Gilbert, J. A., Menzies, J. G., Tkachuk, V., Brown, P. D. and Fox, S. L. 2014. Peace hard red spring wheat. Can. J. Plant Sci. 94: 1297–1302. Peace is a hard red spring wheat (Triticum aestivum L.) adapted to the shorter-season wheat-growing regions of the Canadian prairies. Peace was evaluated in the Parkland Wheat Cooperative Test in 1999, 2000 and 2001. Peace exhibited grain yield similar to the check cultivars over 2 yr (1999–2000; Neepawa and Roblin) and over 3 yr (1999–2001; AC Barrie and AC Splendor) Peace matured a day earlier than AC Barrie but was 2 d later than AC Splendor over 3 yr of testing (1999–2001) and was a day later than Neepawa and Roblin over 2 yr of testing (1999–2000). Peace had test weight similar to the check cultivars. Peace was moderately resistant to leaf rust and loose smut and resistant to stem rust including the highly virulent Ug99 race of stem rust and common bunt. Peace was moderately susceptible to Fusarium head blight. Peace meets the end-use quality specifications of the Canada Western Red Spring wheat class.


Sign in / Sign up

Export Citation Format

Share Document