Stemphylium Leaf Blight of Welsh onion (Allium fistulosum): An Emerging Disease in Sanxing, Taiwan

Plant Disease ◽  
2021 ◽  
Author(s):  
Chun-Hsiang Wang ◽  
Yi Chen Tsai ◽  
Ichen Tsai ◽  
Chia-Lin Chung ◽  
Yu-Chen Lin ◽  
...  

Welsh onion (Allium fistulosum L.) is one of the main and oldest vegetable crops grown in Taiwan. A severe epidemic of leaf blight in Welsh onion caused by a Stemphylium-like pathogen was found in Sanxing, Taiwan, from 2018 to 2020. However, correct species identification, biology and control of Stemphylium leaf blight (SLB) of Welsh onion is not well established. Therefore, the main objective of this study was to investigate the causal agent of SLB in Sanxing and evaluate the in vitro sensitivity of Stemphylium-like pathogen to commonly used fungicides. Phylogenetic analysis based on combining the internal transcribed spacer (ITS) region, and glyceraldedyhe-3-phosphate dehydrogenase (gapdh) and calmodulin (cmdA) gene sequences together with morphological features, identified S. vesicarium as associated with SLB in Sanxing. When inoculated onto Welsh onion leaves, the isolates caused symptoms identical to those seen in the field and S. vesicarium was reisolated, confirming Koch’s postulates. We observed a higher incidence of SLB symptoms on the oldest leaves compared with younger leaves. The maximum and minimum temperatures for in vitro mycelial growth and conidial germination (%) of S. vesicarium were 20 to 30°C and 5°C respectively. Sixteen fungicides were tested for their effectiveness to reduce the mycelial growth and conidial germination of S. vesicarium in vitro. Boscalid + pyraclostrobin, fluopyram, fluxapyroxad, fluxapyroxad + pyraclostrobin were highly effective at reducing mycelial growth and conidial germination in S. vesicarium. However, strobilurin fungicides (azoxystrobin and kresoxim-methyl) commonly used in Welsh onion production in Sanxing were ineffective. This study discusses the emergence of SLB caused by S. vesicarium in the foliar disease complex affecting Welsh onion and the management of the disease using fungicides with different modes of action in Taiwan. The research will underpin the sustainable management of SLB in Sanxing, Taiwan, however further field assessments of the fungicides are warranted.

2001 ◽  
Vol 41 (5) ◽  
pp. 697 ◽  
Author(s):  
D. R. Beasley ◽  
D. C. Joyce ◽  
L. M. Coates ◽  
A. H. Wearing

Saprophytic bacteria, yeasts and filamentous fungi were isolated from Geraldton waxflower flowers and screened to identify potential antagonism towards Botrytis cinerea. Isolates from other sources (e.g. avocado) were also tested. Isolates were initially screened in vitro for inhibition of B. cinerea conidial germination, germ tube elongation and mycelial growth. The most antagonistic bacteria, yeasts and fungi were selected for further testing on detached waxflower flowers. Conidia of the pathogen were mixed with conidia or cells of the selected antagonists, co-inoculated onto waxflower flowers, and the flowers were sealed in glass jars and incubated at 20˚C. The number of days required for the pathogen to cause flower abscission was determined. The most antagonistic bacterial isolate, Pseudomonas sp. 677, significantly reduced conidial germination and retarded germ tube elongation of B. cinerea. None of the yeast or fungal isolates tested was found to significantly reduce conidial germination or retard germ tube elongation, but several significantly inhibited growth of B. cinerea. Fusarium sp., Epicoccum sp. and Trichoderma spp. were the most antagonistic of these isolates. Of the isolates tested on waxflower, Pseudomonas sp. 677 was highly antagonistic towards B. cinerea and delayed waxflower abscission by about 3 days. Trichoderma harzianum also significantly delayed flower abscission. However, as with most of the fungal antagonists used, inoculation of waxflower flowers with this isolate resulted in unsightly mycelial growth.


2013 ◽  
Vol 49 (No. 4) ◽  
pp. 165-168 ◽  
Author(s):  
I. Šafránková ◽  
L. Holková ◽  
M. Kmoch

Leaf blight symptoms were observed on potted box plants (Buxus sempervirens cv. Suffruticosa and B. microphylla) in a nursery in South Moravia in August 2010. These symptoms were suggestive of box blight on Buxus spp. Characteristics of the visual symptoms, microscopic features, and identification of the isolates using DNA sequencing are described. The causal agent was isolated and identified as Cylindrocladium buxicola Henricot by means of morphological, cultural, and molecular characters. The effect of five commercial fungicides on C. buxicola in vitro was studied. The most effective fungicides (kresoxim-methyl, azoxystrobin, and mancozeb) inhibited conidia germination and mycelial growth (kresoxim-methyl, myclobutanil, and penconazole) of C. buxicola more than 96%.  


1998 ◽  
Vol 64 (1) ◽  
pp. 43-49
Author(s):  
Kunihei KISHI ◽  
Toshiko FURUKAWA ◽  
Takao KOBAYASHI ◽  
Toshimasa SHIRAISHI ◽  
Hiroshi SAKAI ◽  
...  

2020 ◽  
Vol 56 (No. 3) ◽  
pp. 191-196
Author(s):  
Kahkashan Perveen ◽  
Najat A. Bokhari

The essential oil obtained by the hydro-distillation of the leaves of Mentha arvensis Linnaeus was evaluated for its antifungal activity against the causal agent of the Alternaria blight of tomatoes, i.e., Alternaria alternata (Fries) Keissler. The antifungal activity of the mentha essential oil was assessed both in vitro and in vivo. The chemical composition of the mentha oil was also identified by GCMS analysis. The in vitro test revealed that the maximum inhibition in the mycelial growth (93.6%) and conidia germination (90.6%) was at the highest concentration (40 µL/mL), furthermore, it was found that the inhibition of the mycelial growth and conidia germination was dose dependent. The in vivo test proved that the application of the mentha essential oil (40 µL/mL) significantly increased the plant height (84.6%), fresh weight (81.5%) and dry weight (80.0%) when compared to the untreated tomato plants. The disease incidence was 3.5 in the untreated plants, while it was 0.93 for the mentha essential oil treated plants and was 0.08 in the carbendazim treated plants. The GC-MS analysis of the mentha essential oil identified 18 compounds in total, among which the percentage of menthol was the highest (69.2%). The mentha essential oil was successful in managing the Alternaria leaf blight in the tomato plants. Therefore, it can be explored further for the development of a natural fungicide.


Plant Disease ◽  
2011 ◽  
Vol 95 (9) ◽  
pp. 1075-1079 ◽  
Author(s):  
C. L. Xiao ◽  
Y. K. Kim ◽  
R. J. Boal

Sphaeropsis rot caused by Sphaeropsis pyriputrescens is a recently reported postharvest fruit rot disease of apple grown in Washington State. The objective of this study was to develop chemical-based mitigation measures for Sphaeropsis rot in stored apple fruit. To determine in vitro sensitivity of S. pyriputrescens to the three registered postharvest fungicides thiabendazole, fludioxonil, and pyrimethanil, 30 isolates of S. pyriputrescens obtained from various sources were tested for mycelial growth and conidial germination on fungicide-amended media. Golden Delicious apple fruit were inoculated with the pathogen in the orchard at 2 or 5 weeks before harvest. After harvest, fruit were either nontreated or dipped in thiabendazole, fludioxonil, or pyrimethanil solutions, stored at 0°C, and monitored for decay development for up to 9 months after harvest. The mean effective concentration of a fungicide that inhibits mycelial growth or spore germination by 50% relative to the nonamended control (EC50) values of thiabendazole, fludioxonil, and pyrimethanil on mycelial growth were 0.791, 0.0005, and 2.829 μg/ml, respectively. Fludioxonil and pyrimethanil also were effective in inhibiting conidial germination of the fungus with EC50 values of 0.02 μg/ml for fludioxonil and 5.626 μg/ml for pyrimethanil. All three postharvest fungicides applied at label rates immediately after harvest were equally effective in controlling Sphaeropsis rot in stored apple fruit, reducing disease incidence by 92 to 100% compared with the nontreated control. The results indicated that Sphaeropsis rot may be effectively controlled by the currently registered postharvest fungicides thiabendazole, fludioxonil, and pyrimethanil.


2016 ◽  
Vol 37 (1) ◽  
pp. 67 ◽  
Author(s):  
Douglas Junior Bertoncelli ◽  
Sérgio Miguel Mazaro ◽  
Rita De Cacia Dosciatti Serrão Rocha ◽  
Nean Locatelli Dalacosta ◽  
Adriano Lewandowski ◽  
...  

The damping off is the main disease that affects the beet crop during the seedling production. The aim of this study was to evaluate different salicylic acid (SA) concentrations for resistance induction against damping-off in beet seedling and its antifungal activity against Fusarium sp., in vitro condition. Treatment of beet seed was with SA solution by immersion during 5 minutes in the 0.5, 1.0, 1.5 and 2.0 mM concentrations and control (distilled water). It was used four replications with 20 cells by experimental unit. The experiment was carried out for 14 days in cultivate chamber with temperature (23 oC ± 2°C), lighting (12 hours photoperiod) and humidity (70% ± 10%) controlled. After this time, the germination, damping off incidence, seedling length and fresh mass matter weight were evaluated. It was evaluated also in the seedling tissue the phenylalanine ammonia-lyase (PAL), ?-1.3 glucanase and chitinase level enzymes. In the in vitro the SA was putted in PDA (potato-dextrose-agar) medium, where the Fusarium sp. mycelial growth was evaluated. The SA applied for seeds treatment didn’t had effect significant on damping off of beet seedlings, but it induced the activity of ?-1.3 glucanase enzyme, it being this higher in nine times when compared the treatment control. The SA acted in the Fusarium sp. in vitro control with fungitoxic action, suppressed mycelial growth in 28% if compared to control.


Plant Disease ◽  
2014 ◽  
Vol 98 (6) ◽  
pp. 780-789 ◽  
Author(s):  
Martha Hincapie ◽  
Nan-Yi Wang ◽  
Natalia A. Peres ◽  
Megan M. Dewdney

Citrus black spot (CBS), caused by Guignardia citricarpa, is an emerging disease in Florida. Fungicide applications are the main control measure worldwide. The in vitro activity and baseline sensitivity of G. citricarpa isolates to quinone outside inhibitor (QoI) fungicides (azoxystrobin and pyraclostrobin) were evaluated. The effective concentration needed to reduce mycelial growth or spore germination by 50% (EC50) was determined for 86 isolates obtained from Florida counties where CBS is found. The effect of salicylhydroxamic acid (SHAM) plus azoxystrobin and pyraclostrobin was also assessed for mycelial growth and conidial germination. The mean EC50 for mycelial growth for azoxystrobin was 0.027 μg/ml and that for pyraclostrobin was significantly lower at 0.007 μg/ml (P < 0.0001). Similarly, the mean EC50 for conidial germination for azoxystrobin was 0.016 μg/ml and that for pyraclostrobin was significantly lower at 0.008 μg/ml (P < 0.0001). There was no effect of SHAM on inhibition of mycelial growth or conidial germination by the QoI fungicides but SHAM slightly affected mycelium inhibition by pyraclostrobin. Cytochrome b was partially sequenced and three group 1 introns were found. One intron was immediately post G143, likely inhibiting resistance-conferring mutations at that site. It is surmised that the QoI resistance risk is low in the Florida G. citricarpa population.


Plant Disease ◽  
2017 ◽  
Vol 101 (4) ◽  
pp. 568-575 ◽  
Author(s):  
J. L. Dang ◽  
M. L. Gleason ◽  
C. K. Niu ◽  
X. Liu ◽  
Y. Z. Guo ◽  
...  

Marssonina blotch, caused by the fungus Marssonina coronariae, is a serious foliar disease on apple in East Asia as well as in other moist temperate regions in Asia, Europe, and South America. Several fungicides were investigated for their toxicity to mycelial growth and conidial germination of the pathogen in vitro. Tebuconazole, kresoxim-methyl, hexaconazole, propiconazole, and a mixture of tebuconazole and benziothiazolinone sharply inhibited mycelial growth but had less effect on conidial germination. Field tests were conducted in a commercial orchard in Baishui County, Shaanxi Province, China, during 2012, 2013, 2014, and 2015 in order to develop recommendations for apple growers. Three applications of tebuconazole, hexaconazole, propiconazole, or a mixture of tebuconazole and benziothiazolinone at 20-day intervals from early July to late August resulted in defoliation incidence of <5%. When sprays of Bordeaux mixture + tebuconazole, Bordeaux mixture + propiconazole, and Bordeaux mixture + tebuconazole and benziothiazolinone were alternated, the spray interval was extended to 25 days and defoliation incidence remained <5%. Based on historical records and our results, scouting for symptoms should begin in mid-June. We recommend commencing the spray period in early July in years with normal rainfall patterns, and spraying in mid- to late June in years with much rainfall. The findings of this study create a foundation for implementation of an efficient spray program against Marssonina leaf blotch in apple orchards in the Loess Plateau Region of China.


Sign in / Sign up

Export Citation Format

Share Document