scholarly journals A LAMP Protocol for the Detection of ‘Candidatus Phytoplasma pyri’, the Causal Agent of Pear Decline

Plant Disease ◽  
2019 ◽  
Vol 103 (6) ◽  
pp. 1397-1404 ◽  
Author(s):  
A. Siemonsmeier ◽  
J. Hadersdorfer ◽  
M. Neumüller ◽  
W. Schwab ◽  
D. Treutter

Phytoplasmas are cell-wall-less bacteria that cause diseases in approximately 1,000 plant species. ‘Candidatus Phytoplasma pyri’, the causal agent of pear decline, induces various symptoms on its hosts, leading to weakening and dieback of the plants, reduced fruit size and yield, and, consequently, considerable financial losses in all pear-growing areas. Fighting this disease requires a reliable and inexpensive method for pathogen detection in propagation material as well as plant stocks in orchards and breeding facilities. Here, we present a field-suitable detection protocol for ‘Ca. P. pyri’ based on loop-mediated isothermal amplification (LAMP) targeting the phytoplasmal 16S ribosomal DNA sequence. The combination of a simplified sample preparation method based on sodium hydroxide and colorimetric visualization of LAMP results enables a laboratory-independent pathogen detection. The detection limit is comparable with analysis by polymerase chain reaction; however, the pear decline LAMP detection method is superior in terms of ease of use, cost, and time effectiveness for obtaining results.

Sensors ◽  
2019 ◽  
Vol 19 (22) ◽  
pp. 4916 ◽  
Author(s):  
Qiaoyun Wu ◽  
Yunzhe Zhang ◽  
Qian Yang ◽  
Ning Yuan ◽  
Wei Zhang

The vital importance of rapid and accurate detection of food borne pathogens has driven the development of biosensor to prevent food borne illness outbreaks. Electrochemical DNA biosensors offer such merits as rapid response, high sensitivity, low cost, and ease of use. This review covers the following three aspects: food borne pathogens and conventional detection methods, the design and fabrication of electrochemical DNA biosensors and several techniques for improving sensitivity of biosensors. We highlight the main bioreceptors and immobilizing methods on sensing interface, electrochemical techniques, electrochemical indicators, nanotechnology, and nucleic acid-based amplification. Finally, in view of the existing shortcomings of electrochemical DNA biosensors in the field of food borne pathogen detection, we also predict and prospect future research focuses from the following five aspects: specific bioreceptors (improving specificity), nanomaterials (enhancing sensitivity), microfluidic chip technology (realizing automate operation), paper-based biosensors (reducing detection cost), and smartphones or other mobile devices (simplifying signal reading devices).


2015 ◽  
Vol 57 (2) ◽  
pp. 129-132 ◽  
Author(s):  
Gaspar PENICHE-LARA ◽  
Karla DZUL-ROSADO ◽  
Carlos PÉREZ-OSORIO ◽  
Jorge ZAVALA-CASTRO

Rickettsia typhi is the causal agent of murine typhus; a worldwide zoonotic and vector-borne infectious disease, commonly associated with the presence of domestic and wild rodents. Human cases of murine typhus in the state of Yucatán are frequent. However, there is no evidence of the presence of Rickettsia typhi in mammals or vectors in Yucatán. The presence of Rickettsia in rodents and their ectoparasites was evaluated in a small municipality of Yucatán using the conventional polymerase chain reaction technique and sequencing. The study only identified the presence of Rickettsia typhi in blood samples obtained from Rattus rattus and it reported, for the first time, the presence of R. felis in the flea Polygenis odiosus collected from Ototylomys phyllotis rodent. Additionally, Rickettsia felis was detected in the ectoparasite Ctenocephalides felis fleas parasitizing the wild rodent Peromyscus yucatanicus. This study’s results contributed to a better knowledge of Rickettsia epidemiology in Yucatán.


2017 ◽  
Vol 4 (suppl_1) ◽  
pp. S503-S503
Author(s):  
Courtney C Sutton ◽  
Patti J Walton ◽  
Montgomery F Williams ◽  
Tracey L Bastian ◽  
Michael Wright ◽  
...  

2006 ◽  
Vol 96 (5) ◽  
pp. 542-548 ◽  
Author(s):  
Marcel Maymon ◽  
Aida Zveibil ◽  
Shimon Pivonia ◽  
Dror Minz ◽  
Stanley Freeman

Sixty-four isolates of Colletotrichum gloeosporioides were isolated from infected Limonium spp. cultivated in 12 different locations in Israel. All isolates were identified as belonging to the C. gloeosporioides complex by species-specific primers. Of these isolates, 46 were resistant to benomyl at 10 μg/ml and 18 were sensitive to this concentration of fungicide. Based on arbitrarily primed polymerase chain reaction of all isolates and internal transcribed spacer-1 sequence analyses of 12 selected isolates, the benomyl-resistant and -sensitive populations belong to two distinct genotypes. Sequence analyses of the β-tubulin genes, TUB1 and TUB2, of five sensitive and five resistant representative isolates of C. gloeosporioides from Limonium spp. revealed that the benomyl-resistant isolates had an alanine substitute instead of a glutamic acid at position 198 in TUB2. All data suggest that the resistant and sensitive genotypes are two independent and separate populations. Because all Limonium plant propagation material is imported from various geographic regions worldwide, and benomyl is not applied to this crop or for the control of Colletotrichum spp. in Israel, it is presumed that plants are bearing quiescent infections from the points of origin prior to arrival.


Sign in / Sign up

Export Citation Format

Share Document