scholarly journals First Report of Occurrence of Eggplant Wilt Caused by Verticillium dahliae in Korea

Plant Disease ◽  
2000 ◽  
Vol 84 (10) ◽  
pp. 1152-1152
Author(s):  
S. K. Kim ◽  
S. S. Hong ◽  
K. W. Kim ◽  
E. W. Park

A wilt disease occurred on greenhouse-grown eggplants (Solanum melongena L.) at Hanam and Yeojoo, Korea, in 1997. Lower leaves on the 2-month-old wilted eggplants exhibited gradual yellowing, interveinal necrosis, and marginal crinkling and dropped prematurely. Vascular tissues of diseased stems were discolored and turned black. Vertical sections of the stems revealed that the pith had been colonized by the fungus. The disease progressed from lower parts of the plants upward. Incidence of diseased eggplants in greenhouses was 5% on 23 May 1997. Although the incidence increased to 10% on 13 June, it remained constant through early July. Fungal isolates from discolored vascular tissues were initially whitish to cream color on potato-dextrose agar, which turned black due to the formation of microsclerotia. The fungus also produced abundant verticillate conidiophores with phialides and conidia. Based on these cultural and morphological characteristics, the fungus was identified as Verticillium dahliae Klebahn. Pathogenicity tests by root cutting, root dipping, or soil drenching resulted in similar symptoms observed in the naturally infected eggplants. Symptoms were first observed on lower leaves of each eggplant 3 weeks after inoculation. Isolation from symptomatic leaves of the inoculated eggplants yielded V. dahliae. This is the first report of occurrence of Verticillium wilt of eggplant in Korea.

Plant Disease ◽  
1999 ◽  
Vol 83 (5) ◽  
pp. 487-487 ◽  
Author(s):  
L. Corazza ◽  
L. Luongo ◽  
M. Parisi

A leaf spot of kiwifruit (Actinidia deliciosa (A. Chev.) C. F. Liang & A. R. Ferg.) leaves was recently observed on plants of the cultivar Hayward in an orchard near Salerno, in southern Italy. The affected plants showed early severe defoliation. The fungus isolated from the infected leaves was identified as Alternaria alternata (Fr.:Fr.) Keissl., based on conidial morphological characteristics. Pathogenicity tests were made by inoculating detached leaves of male pollinator cultivar Tomuri and the female cultivars Hayward and Bruno with a 7-mm disk taken from actively growing cultures of the fungus on potato dextrose agar (PDA). After 14 days, necrotic leaf spots developed and A. alternata was consistently isolated from the inoculated leaves. A. alternata has been observed as a pathogen on leaves and fruits in New Zealand. In the Mediterranean, it has been reported in Israel (2) and in the island of Crete (1). This is the first report of Alternaria leaf spot on kiwifruit in Italy. References: (1) V. A. Bourbos and M. T. Skoudridakis. Petria 7:111, 1997. (2) A. Sive and D. Resnizky. Alon Hanotea 41:409, 1987.


Plant Disease ◽  
2021 ◽  
Author(s):  
Xiuyun Lu ◽  
Junyan Shang ◽  
Luxin Niu ◽  
Xiangrui Sun ◽  
Zhenhe Su ◽  
...  

Watermelon (Citrullus lanatus T.) is one of the most important economic crops in China. Soil-borne diseases are becoming more and more serious with longer growing seasons and continuous cropping of watermelon in greenhouses. In May 2020, symptoms were observed on plants in greenhouses located at Xingtai, Hebei province of China and included wilted leaves, chlorosis and plant death. Among the 26 greenhouses examined, symptomatic plants were observed in 17 greenhouses. The incidences of infected plants ranged from 1% to 35%, and caused an average 10% yield loss. Symptoms began on lower part of the plants and progressed upward to the vines and leaves. At the early stage of infection, the edge of watermelon leaves changed from green to yellow, and became soft. As the disease progressed, infected leaves wilted and desicated. The vascular tissue of the stem exhibited a uniform brown discoloration that often extended throughout the vine. To identify the causal agent, small pieces approximate 3.0×3.0 mm size of infected stem tissues were collected and sterilized with 0.5% sodium hypochlorite solution for 1 min, rinsed three times with sterile water and transferred onto potato dextrose agar (PDA) medium amended with 100 μg·mL-1 of chloramphenicol. The plates were incubated at 25°C for 3 days in the dark and fungal isolates were purified using the single-spore isolation method. A total of 22 fungal isolates with identical colony morphology were collected from diseased plants. The color of the fungal colonies on PDA medium was creamy-white with an abundance of mycelia that darken after 5 days growth due to the formation of microsclerotia. Fungal colonies consisted of fine, hyaline hyphae with verticillate conidiophores producing hyaline, ellipsoidal to oval conidia with an average size of 5.12×3.41 μm (n=50). The morphological characters of the fungal isolates were identical to those of Verticillium dahliae Kleb. described by Hawksworth and Talboys (Hawksworth, D. and Talboys, P, 1970). Pathogenicity tests were performed by soaking 30 watermelon seedlings with wounded root tips in the fungal conidial suspension (1x107 conidium/mL) for 30 min (Ma, et al, 2004). The same number of non-inoculated watermelon seedlings was used as a control. All plants were kept in a greenhouse at 25°C and 90%-95% relative humidity. Seven days post-inoculation (dpi), leaves of treated plants began to show symptoms of wilt. At 10-dpi, lower leaves wilted and dry and by 15-dpi, whole plants were dead. Pathogenicity tests were repeated three times with consistent results. The pathogen was re-isolated from the diseased plants and displayed identical morphological characteristics to the original isolates. To further identity the pathogens, the ribosomal DNA Internal Transcribed Spacer (rDNA-ITS) region was amplified by PCR (White et al., 1990; Liu et al., 1999; Bellemain et al.. 2010). The amplicon was sequenced and showed 99%-100% identity to the ITS region of the V. dahliae reference strains deposited in the NCBI database (MK093977.1, MK287620.1, MT348570.1 and LC549667.1, respectively). Based on morphological and ITS sequence information, the fungal pathogen was identified as V. dahliae. V. dahliae is an economically important pathogen with a wide host range worldwide. The discovery of Verticillium wilt on watermelons indicates that there might be a risk of Verticillium wilt when watermelons are planted in subsequent crops of the host plants of the disease, such as cotton or eggplant. To our knowledge, this is the first report of V. dahliae causing Verticillium wilt of watermelon in China. Financed: the Special Fund for Agro-scientific Research in the Public Interest, China (201503109) References: Hawksworth, D. and Talboys, P. 1970. Description of Pathogenic Fungi and Bacteria, CMI, Surrey. Ma, P., et al. 2004. A New Inoculation Method for Verticillium Wilt on Cotton and Its Application in Evaluating Pathogenesis and Host Resistance. Acta Phytopathologica Sinica, 34(6): 536-541. White, T. J., et al. 1990. Amplification and Direct Sequencing of Fungal Ribosomal RNA Genes for Phylogenetics. PCR protocols: a guide to methods and applications, 18(1), 315-322. Bellemain, E., et al. 2010. ITS as an Environmental DNA Barcode for Fungi: an in Silico Approach Reveals Potential PCR Biases. BMC microbiology, 10(1), 1-9. Liu, Y. J., et al. 1999. Phylogenetic Relationships Among Ascomycetes: Evidence from an RNA Polymerse II SubunitMol. Biol. Evol. 16:1799-1808.


Plant Disease ◽  
2007 ◽  
Vol 91 (6) ◽  
pp. 770-770 ◽  
Author(s):  
A. Garibaldi ◽  
G. Gilardi ◽  
M. L. Gullino

Lettuce (Lactuca sativa L.) is an important crop used for fresh and processing markets in Italy and is grown on more than 21,000 ha. During October and November of 2006, wilt symptoms were observed on field-grown lettuce, cv. Estelle, in Forlì, Emila Romagna (northeastern Italy) and on cv. Ballerina grown under plastichouses in Piedmont (northwestern Italy). Both lettuce cultivars were of a butterhead type. Affected plants were stunted and developed yellow leaves with brown or black streaks in the vascular tissue. Yellowing started from the external leaves. Discoloration was observed in the vascular tissue of roots, crown, and leaves. A fungus was consistently and readily isolated from symptomatic vascular tissue, previously disinfested in 1% sodium hypochlorite, when cultured on potato dextrose agar (PDA). Microscopic observations revealed hyaline hyphae with many ovoid, dark microsclerotia measuring 32 to 43 × 16 to 26 μm developing after 15 days of growth at 18°C in the dark. Conidiophores showed two verticils of three elements. Conidia were hyaline, elliptical, single celled, and measured 3.5 to 8.5 × 1.8 to 4.3 μm (average 5.5 × 2.5 μm). According to its morphological characteristics, the fungus was identified as Verticillium dahliae (2). Healthy, 20-day-old lettuce plants, cvs. Principessa and Maxima, both belonging to the butterhead type, were separately inoculated by root dip with a conidial suspension (106/ml) of two isolates of V. dahliae isolated, respectively, at Forlì and Torino. Noninoculated lettuce plants served as control treatments. Plants (10 per treatment) were grown in pots (10-liter vol.) in a steam-disinfested peat/perlite/sand (3:1:1 vol/vol) substrate and were maintained in a glasshouse at temperatures ranging between 17 and 22°C and relative humidity ranging between 60 and 70%. First wilt symptoms and vascular discoloration in the roots, crown, and veins developed 40 days after the artificial inoculation. Forty percent of the plants were affected in the case of cv. Maxima and 30% for cv. Principessa. Noninoculated plants remained healthy. The pathogenicity tests were repeated twice. To our knowledge, this is the first report in Italy of Verticillium wilt on lettuce. The disease has been previously reported in Greece (1) and the United States (3). Currently, Verticillium wilt of lettuce seems restricted in Italy to very few farms in the two locations; moreover, its incidence is very low (0.05%). References: (1) E. K. Ligoxigakis et al. Phytoparasitica 30:141, 2002. (2) G. F. Pegg and B. L. Brady. Verticillium Wilts. CABI Publishing, Wallingford, UK, 2002. (3) G. E. Vallad et al. Plant Dis. 89:317, 2005.


Plant Disease ◽  
2000 ◽  
Vol 84 (3) ◽  
pp. 371-371 ◽  
Author(s):  
P. C. Tsahouridou ◽  
C. C. Thanassoulopoulos

During a survey of diseases on kiwifruit (Actinidia chinensis) cv. Hayward during spring 1998 in Northern Greece, leaves of kiwifruit trees were found covered with small, necrotic brown spots. Intense spotting was associated with defoliation. Furthermore, small, sunken, dark brown cankers appeared a few centimeters below the twig tip, and twigs died distal to the canker a few days later, while the twig remained healthy below the canker, often producing a new shoot below the canker. Isolations from symptomatic leaves and internal tissues of twigs on potato dextrose agar (PDA), after surface-sterilization with 0.5% NaOCl and 90% alcohol, respectively, consistently yielded a fungus that, based on conidial morphological characteristics, was identified as Alternaria alternata (Nees:Fr.) Keissl. (2). Pathogenicity tests were performed on 3-year-old kiwi plants. Tests on twigs were conducted by inoculating 35 twigs with 5-mm disks from 7-day-old cultures on PDA at 25°C. Each twig was inoculated with three disks. Tests on leaves were conducted by spraying a conidial suspension (5 × 106 conidia per ml) of the cultures on leaves. Plants were kept in a glasshouse at 22 to 25°C. Symptoms, identical to those observed in the field, developed on leaves and twigs 6 and 18 days, respectively, after inoculation. All inoculated leaves exhibited symptoms of the disease, whereas more than 95% of inoculated twigs exhibited disease symptoms. A. alternata was consistently reisolated from inoculated tissues. A. alternata is widely known to be a leaf spot pathogen of kiwifruit (1). This is the first report of A. alternata causing twig dieback. References: (1) L. Corazza and L. Luongo. Plant Dis. 83:487, 1999. (2) E. G. Simmons. Mycotaxon 37:79, 1990.


Plant Disease ◽  
2021 ◽  
pp. PDIS-06-20-1290
Author(s):  
Juliana S. Baggio ◽  
Bruna B. Forcelini ◽  
Nan-Yi Wang ◽  
Rafaela G. Ruschel ◽  
James C. Mertely ◽  
...  

Pestalotiopsis-like species have been reported affecting strawberry worldwide. Recently, severe and unprecedented outbreaks have been reported in Florida commercial fields where leaf, fruit, petiole, crown, and root symptoms were observed, and yield was severely affected. The taxonomic status of the fungus is confusing because it has gone through multiple reclassifications over the years. Morphological characteristics, phylogenetic analyses, and pathogenicity tests were evaluated for strawberry isolates recovered from diseased plants in Florida. Phylogenetic analyses derived from the combined internal transcribed spacer, β-tub, and tef1 regions demonstrated that although there was low genetic diversity among the strawberry isolates, there was a clear separation of the isolates in two groups. The first group included isolates recovered over a period of several years, which was identified as Neopestalotiopsis rosae. Most isolates recovered during the recent outbreaks were genetically different and may belong to a new species. On potato dextrose agar, both groups produced white, circular, and cottony colonies. From the bottom, colonies were white to pale yellow for Neopestalotiopsis sp. and pale luteous to orange for N. rosae. Spores for both groups were five-celled with three median versicolored cells. Mycelial growth and spore production were higher for the new Neopestalotiopsis sp. isolates. Isolates from both groups were pathogenic to strawberry roots and crowns. However, the new Neopestalotiopsis sp. proved more aggressive in fruit and leaf inoculation tests, confirming observations from the recent outbreaks in commercial strawberry fields in Florida.


Plant Disease ◽  
2011 ◽  
Vol 95 (5) ◽  
pp. 616-616 ◽  
Author(s):  
J. Kim ◽  
O. Choi ◽  
J.-H. Kwon

Sweet persimmon (Diospyros kaki L.), a fruit tree in the Ebenaceae, is cultivated widely in Korea and Japan, the leading producers worldwide (2). Sweet persimmon fruit with flyspeck symptoms were collected from orchards in the Jinju area of Korea in November 2010. The fruit had fungal clusters of black, round to ovoid, sclerotium-like fungal bodies with no visible evidence of a mycelial mat. Orchard inspections revealed that disease incidence ranged from 10 to 20% in the surveyed area (approximately 10 ha) in 2010. Flyspeck symptoms were observed on immature and mature fruit. Sweet persimmon fruit peels with flyspeck symptoms were removed, dried, and individual speck lesions transferred to potato dextrose agar (PDA) and cultured at 22°C in the dark. Fungal isolates were obtained from flyspeck colonies on 10 sweet persimmon fruit harvested from each of three orchards. Fungal isolates that grew from the lesions were identified based on a previous description (1). To confirm identity of the causal fungus, the complete internal transcribed spacer (ITS) rDNA sequence of a representative isolate was amplified and sequenced using primers ITS1 and ITS4 (4). The resulting 552-bp sequence was deposited in GenBank (Accession No. HQ698923). Comparison with ITS rDNA sequences showed 100% similarity with a sequence of Zygophiala wisconsinensis Batzer & Crous (GenBank Accession No. AY598855), which infects apple. To fulfill Koch's postulates, mature, intact sweet persimmon fruit were surface sterilized with 70% ethanol and dried. Three fungal isolates from this study were grown on PDA for 1 month. A colonized agar disc (5 mm in diameter) of each isolate was cut from the advancing margin of a colony with a sterilized cork borer, transferred to a 1.5-ml Eppendorf tube, and ground into a suspension of mycelial fragments and conidia in a blender with 1 ml of sterile, distilled water. The inoculum of each isolate was applied by swabbing a sweet persimmon fruit with the suspension. Three sweet persimmon fruit were inoculated per isolate. Three fruit were inoculated similarly with sterile, distilled water as the control treatment. After 1 month of incubation in a moist chamber at 22°C, the same fungal fruiting symptoms were reproduced as observed in the orchards, and the fungus was reisolated from these symptoms, but not from the control fruit, which were asymptomatic. On the basis of morphological characteristics of the fungal colonies, ITS sequence, and pathogenicity to persimmon fruit, the fungus was identified as Z. wisconsinensis (1). Flyspeck is readily isolated from sweet persimmon fruit in Korea and other sweet persimmon growing regions (3). The exposure of fruit to unusual weather conditions in Korea in recent years, including drought, and low-temperature and low-light situations in late spring, which are favorable for flyspeck, might be associated with an increase in occurrence of flyspeck on sweet persimmon fruit in Korea. To our knowledge, this is the first report of Z. wisconsinensis causing flyspeck on sweet persimmon in Korea. References: (1) J. C. Batzer et al. Mycologia 100:246, 2008. (2) FAOSTAT Database. Retrieved from http://faostat.fao.org/ , 2008. (3) H. Nasu and H. Kunoh. Plant Dis. 71:361, 1987. (4) T. J. White et al. Page 315 in: PCR Protocols: A Guide to Methods and Applications. M. A. Innis et al., eds. Academic Press, Inc., New York, 1990.


Plant Disease ◽  
2021 ◽  
Author(s):  
Jiahao Lai ◽  
Guihong Xiong ◽  
Bing Liu ◽  
Weigang Kuang ◽  
Shuilin Song

Blueberry (Vaccinium virgatum), an economically important small fruit crop, is characterized by its highly nutritive compounds and high content and wide diversity of bioactive compounds (Miller et al. 2019). In September 2020, an unknown leaf blight disease was observed on Rabbiteye blueberry at the Agricultural Science and Technology Park of Jiangxi Agricultural University in Nanchang, China (28°45'51"N, 115°50'52"E). Disease surveys were conducted at that time, the results showed that disease incidence was 90% from a sampled population of 100 plants in the field, and this disease had not been found at other cultivation fields in Nanchang. Leaf blight disease on blueberry caused the leaves to shrivel and curl, or even fall off, which hindered floral bud development and subsequent yield potential. Symptoms of the disease initially appeared as irregular brown spots (1 to 7 mm in diameter) on the leaves, subsequently coalescing to form large irregular taupe lesions (4 to 15 mm in diameter) which became curly. As the disease progressed, irregular grey-brown and blighted lesion ran throughout the leaf lamina from leaf tip to entire leaf sheath and finally caused dieback and even shoot blight. To identify the causal agent, 15 small pieces (5 mm2) of symptomatic leaves were excised from the junction of diseased and healthy tissue, surface-sterilized in 75% ethanol solution for 30 sec and 0.1% mercuric chloride solution for 2 min, rinsed three times with sterile distilled water, and then incubated on potato dextrose agar (PDA) at 28°C for 5-7 days in darkness. Five fungal isolates showing similar morphological characteristics were obtained as pure cultures by single-spore isolation. All fungal colonies on PDA were white with sparse creeping hyphae. Pycnidia were spherical, light brown, and produced numerous conidia. Conidia were 10.60 to 20.12 × 1.98 to 3.11 µm (average 15.27 × 2.52 µm, n = 100), fusiform, sickle-shaped, light brown, without septa. Based on morphological characteristics, the fungal isolates were suspected to be Coniella castaneicola (Cui 2015). To further confirm the identity of this putative pathogen, two representative isolates LGZ2 and LGZ3 were selected for molecular identification. The internal transcribed spacer region (ITS) and large subunit (LSU) were amplified and sequenced using primers ITS1/ITS4 (Peever et al. 2004) and LROR/LR7 (Castlebury and Rossman 2002). The sequences of ITS region (GenBank accession nos. MW672530 and MW856809) showed 100% identity with accessions numbers KF564280 (576/576 bp), MW208111 (544/544 bp), MW208112 (544/544 bp) of C. castaneicola. LSU gene sequences (GenBank accession nos. MW856810 to 11) was 99.85% (1324/1326 bp, 1329/1331 bp) identical to the sequences of C. castaneicola (KY473971, KR232683 to 84). Pathogenicity was tested on three blueberry varieties (‘Rabbiteye’, ‘Double Peak’ and ‘Pink Lemonade’), and four healthy young leaves of a potted blueberry of each variety with and without injury were inoculated with 20 μl suspension of prepared spores (106 conidia/mL) derived from 7-day-old cultures of LGZ2, respectively. In addition, four leaves of each variety with and without injury were sprayed with sterile distilled water as a control, respectively. The experiment was repeated three times, and all plants were incubated in a growth chamber (a 12h light and 12h dark period, 25°C, RH greater than 80%). After 4 days, all the inoculated leaves started showing disease symptoms (large irregular grey-brown lesions) as those observed in the field and there was no difference in severity recorded between the blueberry varieties, whereas the control leaves showed no symptoms. The fungus was reisolated from the inoculated leaves and confirmed as C. castaneicola by morphological and molecular identification, fulfilling Koch’s postulates. To our knowledge, this is the first report of C. castaneicola causing leaf blight on blueberries in China. The discovery of this new disease and the identification of the pathogen will provide useful information for developing effective control strategies, reducing economic losses in blueberry production, and promoting the development of the blueberry industry.


Plant Disease ◽  
2006 ◽  
Vol 90 (8) ◽  
pp. 1109-1109 ◽  
Author(s):  
A. Garibaldi ◽  
G. Gilardi ◽  
M. L. Gullino

Lamb's lettuce or corn salad (Valerianella olitoria) is increasingly grown in Italy and used primarily in the preparation of mixed processed salad. In the fall of 2005, plants of lamb's lettuce, cv Trophy, exhibiting a basal rot were observed in some commercial greenhouses near Bergamo in northern Italy. The crown of diseased plants showed extensive necrosis, progressing to the basal leaves, with plants eventually dying. The first symptoms, consisting of water-soaked zonate lesions on basal leaves, were observed on 30-day-old plants during the month of October when temperatures ranged between 15 and 22°C. Disease was uniformly distributed in the greenhouses, progressed rapidly in circles, and 50% of the plants were affected. Diseased tissue was disinfested for 1 min in 1% NaOCl and plated on potato dextrose agar amended with 100 μg/liter of streptomycin sulfate. A fungus with the morphological characteristics of Rhizoctonia solani was consistently and readily isolated and maintained in pure culture after single-hyphal tipping (3). The five isolates of R. solani, obtained from affected plants successfully anastomosed with tester isolate AG 4, no. RT 31, received from R. Nicoletti of the Istituto Sperimentale per il Tabacco, Scafati, Italy (2). The hyphal diameter at the point of anastomosis was reduced, and cell death of adjacent cells occurred (1). Pairings were also made with AG 1, 2, 3, 5, 7, and 11 with no anastomoses observed between the five isolates and testers. For pathogenicity tests, the inoculum of R. solani (no. Rh. Vale 1) was grown on autoclaved wheat kernels at 25°C for 10 days. Plants of cv. Trophy were grown in 10-liter containers (20 × 50 cm, 15 plants per container) on a steam disinfested substrate (equal volume of peat and sand). Inoculations were made on 20-day-old plants by placing 2 g of infected wheat kernels at each corner of the container with 3 cm as the distance to the nearest plant. Plants inoculated with clean wheat kernels served as controls. Three replicates (containers) were used. Plants were maintained at 25°C in a growth chamber programmed for 12 h of irradiation at a relative humidity of 80%. The first symptoms, consisting of water-soaked lesions on the basal leaves, developed 5 days after inoculation with crown rot and plant kill in 2 weeks. Control plants remained healthy. R. solani was consistently reisolated from infected plants. The pathogenicity test was carried out twice with similar results. This is, to our knowledge, the first report of R. solani on lamb's lettuce in Italy as well as worldwide. The isolates were deposited at the AGROINNOVA fungal collection. The disease continues to spread in other greenhouses in northern Italy. References: (1) D. Carling. Rhizoctonia Species: Pages 37–47 in: Taxonomy, Molecular Biology, Ecology, Pathology and Disease Control. B. Sneh et al., eds. Kluwer Academic Publishers, the Netherlands, 1996. (2) J. Parmeter et al. Phytopathology, 59:1270, 1969. (3) B. Sneh et al. Identification of Rhizoctonia Species. The American Phytopathological Society, St. Paul, MN, 1996.


Plant Disease ◽  
2000 ◽  
Vol 84 (12) ◽  
pp. 1345-1345 ◽  
Author(s):  
M. C. Rivera ◽  
E. R. Wright ◽  
S. Carballo

Chinese rose (Hibiscus rosa-sinensis L.) is a shrub frequently planted in Argentina. In November 1999, dieback and anthracnose symptoms were detected on stems and leaves of plants cv. Hawaii cultivated in Buenos Aires. Disease prevalence was 50%. Pieces of infected tissues were surface-sterilized for 1 min in 2% NaOCl, plated on potato-dextrose agar and incubated at 24 ± 2°C. The isolate that was consistently recovered from diseased tissues was identified as Colletotrichum gloeosporioides (Penz.) Penz. and Sacc., based on morphological characteristics (1,2). Teleomorph stage was not observed. Inoculation for pathogenicity testing was carried out by spraying a conidial suspension (6.5 × 106 conidia per ml) on plants with previously punctured leaves and pruned stems. Inoculated plants with unwounded tissues, as well as noninoculated controls, were included. Five replications of each treatment were done. Plants were incubated in moist chambers at 24°C. Whitish areas of 0.3 to 0.5 cm diameter surrounded by a purple halo developed on all punctured leaves within 10 days. Stem blight and leaf drop were observed. The center of the lesions was covered by black acervuli 14 days after inoculation. Unwounded and noninoculated controls remained symptomless. The pathogen was reisolated from inoculated leaves, completing Koch's postulates. This is the first report of C. gloeosporioides causing disease on Chinese rose in Argentina. References: (1) J. A. Bailey and M. J. Jeger, eds. 1992. Colletotrichum. CAB International, Surrey, England. (2) B. C. Sutton. 1980. The Coelomycetes. CMI, Kew.


Plant Disease ◽  
2021 ◽  
Author(s):  
Tao Luo ◽  
Guoqing Li ◽  
Long Yang

Oilseed rape (Brassica napus L.) is one of the most important oilseed crops in China. It is widely cultivated in China, with winter oilseed rape in Yangtze River basin and in southern China, and spring oilseed rape in northern China. In August 2017, a survey for Leptosphaeria spp. on spring oilseed rape was conducted in Minle county, Zhangye city, Gansu Province, China. The symptoms typical of blackleg on basal stems of oilseed rape were observed in the field. A large number of black fruiting bodies (pycnidia) were present on the lesions (Fig. 1A). The disease incidence of basal stem infection in the surveyed field was 19%. A total of 19 diseased stems were collected to isolate the pathogen. After surface sterilizing (75% ethanol for 30 s, 5% NaOCl for 60 s, followed by rinsing in sterilized water three times), diseased tissues were cultured on acidified potato dextrose agar (PDA) plates at 20°C for 7 days. Twelve fungal isolates were obtained. All fungal isolates produced typical tan pigment on PDA medium, and produced pycnidia after two weeks (Fig. 1B). Colony morphological characteristics indicated that these isolates might belong to Leptosphaeria biglobosa. To confirm identification, multiple PCR was conducted using the species-specific primers LmacF, LbigF, LmacR (Liu et al. 2006). Genomic DNA of each isolate was extracted using the cetyltrimethylammonium bromide (CTAB) method. DNA samples of L. maculans isolate UK-1 and L. biglobosa isolate W10 (Cai et al. 2015) were used as references. Only a 444-bp DNA band was detected in all 12 isolates and W10, whereas a 333-bp DNA band was detected only in the UK-1 isolate (Fig. 1C). PCR results suggested that these 12 isolates all belong to L. biglobosa. In addition, the internal transcribed spacer (ITS) region of these 12 isolates was analyzed for subspecies identification (Vincenot et al. 2008). Phylogenetic analysis based on ITS sequence showed that five isolates (Lb1134, Lb1136, Lb1138, Lb1139 and Lb1143) belonged to L. biglobosa ‘brassicae’ (Lbb) with 78% bootstrap support, and the other seven isolates (Lb1135, Lb1137, Lb1140, Lb1141, Lb1142, Lb1144 and Lb1145) belonged to L. biglobosa ‘canadensis’ (Lbc) with 95% bootstrap support (Fig. 1D). Two Lbb isolates (Lb1134 and Lb1136) and two Lbc isolates (Lb1142 and Lb1144) were randomly selected for pathogenicity testing on B. napus cultivar Zhongshuang No. 9 (Wang et al. 2002). Conidial suspensions (10 μL, 1 × 107 conidia mL-1) of these four isolates were inoculated on needle-wounded cotyledons (14-day-old seedling), with 10 cotyledons (20 wounded sites) per isolate. A further 10 wounded cotyledons were inoculated with water and served as controls. Seedlings were maintained in a growth chamber at 20°C with 100% relative humidity and a 12-h photoperiod. After 7 days, cotyledons inoculated with the four isolates showed necrotic lesions in the inoculated wounds. Control cotyledons had no symptoms (Fig. 2). Fungi re-isolated from the infected cotyledons showed similar colony morphology as the original isolates. Therefore, L. biglobosa ‘brassicae’ and L. biglobosa ‘canadensis’ appear to be the pathogens causing the observed blackleg symptoms on spring oilseed rape in Gansu, China. In previous studies, L. biglobosa ‘brassicae’ has been found in many crops in China, including oilseed rape (Liu et al. 2014; Cai et al. 2015), Chinese radish (Raphanus sativus) (Cai et al. 2014a), B. campestris ssp. chinensis var. purpurea (Cai et al. 2014b), broccoli (B. oleracea var. italica) (Luo et al. 2018), ornamental kale (B. oleracea var. acephala) (Zhou et al. 2019a), B. juncea var. multiceps (Zhou et al. 2019b), B. juncea var. tumida (Deng et al. 2020) and Chinese cabbage (B. rapa subsp. pekinensis) (Yu et al. 2021 accepted). To the best of our knowledge, this is the first report of L. biglobosa ‘canadensis’ causing blackleg on B. napus in China.


Sign in / Sign up

Export Citation Format

Share Document