scholarly journals Suppression of Fusarium Wilt of Watermelon by Soil Amendment with Hairy Vetch

Plant Disease ◽  
2004 ◽  
Vol 88 (12) ◽  
pp. 1357-1365 ◽  
Author(s):  
X. G. Zhou ◽  
K. L. Everts

Hairy vetch (Vicia villosa Roth) as a soil amendment was evaluated for suppression of Fusarium wilt of watermelon and soil populations of Fusarium oxysporum f. sp. niveum in greenhouse, microplot, and field studies. When mixed at 1 or 5% (wt/wt) in a loamy sand soil that was artificially or naturally infested with race 2 of F. oxysporum f. sp. niveum, pulverized dry hairy vetch, crab shell, and urea provided the best suppression (53 to 87% reduction) of Fusarium wilt on watermelon seedlings among 13 plant and animal residues screened. Soil amended with hairy vetch at 0.25 or 0.5% (wt/wt) in microplots resulted in 54 to 69% decreased wilt incidence and 100 to 220% increase of watermelon plant biomass. Hairy vetch winter cover crop incorporated into field plots under black plastic provided 42 to 48% reduction of wilt incidence, 64 to 100% increase of plant biomass, and a 34 to 68% increase in weight of fruit, comparable to improvements achieved by the soil fumigants methyl bromide or 1,3-dichloropropene plus 35% chloropicrin. Soil amendment with hairy vetch also increased the sugar content of watermelon fruit 10 to 15%. Significant reductions in the populations of F. oxysporum f. sp. niveum were not observed in hairy vetch-amended soil in microplots and field plots, but were observed in greenhouse pot soil amended with 5% (wt/wt) hairy vetch, which was attributed primarily to increased levels of fungicidal ammonia produced during decomposition. Incorporating hairy vetch into mulched soil can be an alternative or supplement to cultivar resistance and crop rotation for management of Fusarium wilt of watermelon.

2006 ◽  
Vol 7 (1) ◽  
pp. 23 ◽  
Author(s):  
X. G. Zhou ◽  
K. L. Everts

Hairy vetch (Vicia villosa Roth) green manure is a newly-described potential management tool for Fusarium wilt of watermelon, but control is insufficient when watermelon, especially triploid watermelon, is grown in severely infested soils. A field experiment in a split-split-plot design was conducted over two years to evaluate efficacy of hairy vetch green manure alone and in combination with a moderately wilt-resistant (MR) triploid watermelon cultivar for wilt suppression compared with preplant soil fumigants. Either the soil-incorporated hairy vetch winter cover crop or the MR cultivar was effective in reducing wilt incidence, promoting plant vine growth, and increasing fruit yield. However, neither approach alone resulted in disease reductions sufficient to obtain an acceptable level of marketable fruit yield. An additive effect was observed when both treatments were combined and was greater than that obtained with the fumigants methyl bromide or metam sodium. Stem colonization by Fusarium oxysporum f. sp. niveum was lower following hairy vetch green manure than in fallow treatments, and was lowest in the MR cultivar grown in green-manured plots. The combined use of hairy vetch green manure and a MR cultivar can enhance suppression of Fusarium wilt in triploid watermelon. Accepted for publication 25 February 2006. Published 5 April 2006.


1993 ◽  
Vol 7 (3) ◽  
pp. 594-599 ◽  
Author(s):  
Melinda L. Hoffman ◽  
Emilie E. Regnier ◽  
John Cardina

Field studies were conducted in 1990 and 1991 to determine the effects of corn planting date and hairy vetch control method on the efficacy of fall-planted hairy vetch as a weedsuppressive cover crop for no-till corn. Glyphosate controlled hairy vetch when applied at the early bud growth stage (April), but hairy vetch residue provided no weed control compared to the weedy check. Mowing was not an effective means of suppressing hairy vetch at the early bud stage. Untreated hairy vetch reduced weed biomass 96% in 1990 and 58% in 1991 but reduced yield over 76% in April-planted corn. There was no competition of untreated hairy vetch with corn when corn planting was delayed until May or June (mid- or late-bloom growth stages of hairy vetch). Corn planted in May into untreated hairy vetch yielded similarly to corn planted in a no-cover weed-free check.


Author(s):  
L. M. Manici ◽  
F. Caputo ◽  
G. A. Cappelli ◽  
E. Ceotto

Abstract Soil suppressiveness which is the natural ability of soil to support optimal plant growth and health is the resultant of multiple soil microbial components; which implies many difficulties when estimating this soil condition. Microbial benefits for plant health from repeated digestate applications were assessed in three experimental sites surrounding anaerobic biogas plants in an intensively cultivated area of northern Italy. A 2-yr trial was performed in 2017 and 2018 by performing an in-pot plant growth assay, using soil samples taken from two fields for each experimental site, of which one had been repeatedly amended with anaerobic biogas digestate and the other had not. These fields were similar in management and crop sequences (maize was the recurrent crop) for the last 10 yr. Plant growth response in the bioassay was expressed as plant biomass production, root colonization frequency by soil-borne fungi were estimated to evaluate the impact of soil-borne pathogens on plant growth, abundance of Pseudomonas and actinomycetes populations in rhizosphere were estimated as beneficial soil microbial indicators. Repeated soil amendment with digestate increased significantly soil capacity to support plant biomass production as compared to unamended control in both the years. Findings supported evidence that this increase was principally attributable to a higher natural ability of digestate-amended soils to reduce root infection by saprophytic soil-borne pathogens whose inoculum was increased by the recurrent maize cultivation. Pseudomonas and actinomycetes were always more abundant in digestate-amended soils suggesting that both these large bacterial groups were involved in the increase of their natural capacity to control soil-borne pathogens (soil suppressiveness).


Toxicon ◽  
2021 ◽  
Author(s):  
Laura S. Aguirre ◽  
Germán Cantón ◽  
Eleonora Morrell ◽  
Gabriela V. Sandoval ◽  
Diego M. Medina ◽  
...  

Author(s):  
N. V. Shmeleva ◽  

The article presents the results of field studies aimed at expanding the species composition of herbs and the search for adaptive cereals with a high sugar content in the Upper Volga region in 2015-2020.


2021 ◽  
Vol 58 (5) ◽  
pp. 913-916
Author(s):  
Gurjot Singh ◽  
Daljeet Singh Buttar ◽  
Sukhman Kaur Aulakh

1988 ◽  
Vol 34 (3) ◽  
pp. 201-206 ◽  
Author(s):  
C. S. Rothrock ◽  
W. L. Hargrove

The influence of winter legume cover crops and of tillage on soil populations of fungal genera containing plant pathogenic species in the subsequent summer sorghum crop were examined in field studies. Legume cover crops significantly increased populations of Pythium spp. throughout the sorghum crop compared with a rye cover crop or no cover crop. This stimulation of the populations of Pythium spp. was not solely due to colonization of cover-crop residue, as populations were significantly greater at the time the legume cover crop was desiccated. Removal of aboveground residue generally decreased populations of Pythium spp. in soil. Incorporation of residue by tillage increased populations of Pythium spp. at some sampling dates. Legumes differed in the magnitude of stimulation, with hairy vetch stimulating Pythium spp. more than crimson clover. Cover crop treatments did not consistently influence soil populations of Fusarium spp., Rhizoctonia solani, Rhizoctonia-like binucleate fungi, or Macrophomina phaseolina. Macrophomina phaseolina populations were significantly greater under no tillage.


Soil Research ◽  
2017 ◽  
Vol 55 (1) ◽  
pp. 93 ◽  
Author(s):  
Hongjie Zhang ◽  
R. Paul Voroney ◽  
G. W. Price ◽  
Andrew J. White

Hydrogen sulfide (H2S) is a highly toxic and corrosive contaminant gas co-generated during anaerobic digestion. Studies have shown that biochars have the potential to adsorb H2S and to promote its oxidisation. To date, no studies have investigated the bioavailabilty to plants of the sulfur (S) contained in biochar when used as an S fertiliser. Biochar was packed into the biogas emissions stream to adsorb the H2S being generated. The resulting sulfur-enriched biochar (SulfaChar) and synthetic S fertiliser (control treatment) were amended to potting soils and the growth response of corn (Zea mays L.) and soybeans [Glycine max (L.) Merr.] and nutrient uptake were measured after a 90-day greenhouse study. SulfaChar contained 36.5% S (S element and SO42–), confirming it adsorbed significant amounts of H2S. Compared with the control treatment, SulfaChar amendment significantly increased corn plant biomass, ranging from 31% to 49% but only a slight increase in soybean biomass (4 to 14%). SulfaChar also increased corn plant uptake of S and other macro- (N, P, K, Ca, and Mg) and micro-nutrients (Zn, Mn and B). Our results show that SulfaChar was a source of plant available S, suggesting that SulfaChar is either a supplier of these nutrients or that it promoted their uptake.


Sign in / Sign up

Export Citation Format

Share Document