scholarly journals Response of Chile Pepper to Phytophthora capsici in Relation to Soil Salinity

Plant Disease ◽  
2004 ◽  
Vol 88 (2) ◽  
pp. 205-209 ◽  
Author(s):  
S. Sanogo

The response of chile pepper to salinity and infection by Phytophthora capsici was assessed under greenhouse conditions in plants susceptible or resistant to P. capsici. Additionally, the effect of salinity on mycelial growth and production of sporangia and zoospores by P. capsici was evaluated in the laboratory. Salinity treatments consisted of varying levels of electrical conductivity (from 1.8 to 14.4 dS/m) achieved by amending irrigation water or growth media with a mixture of sodium chloride and calcium chloride. In plants susceptible to P. capsici, disease severity increased by approximately 1.3 to 2.7-fold with increasing salinity level, whereas no such effect was observed in plants resistant to P. capsici. Mycelial dry weight increased by 8 to 16%, and radial growth of mycelium was augmented by 5 to 30% with increase in salinity level. Production of sporangia and zoospore formation were reduced by approximately 3 to 85 and 1 to 93%, respectively, under saline conditions. These results indicate that salinity may predispose susceptible chile pepper plants to infection by P. capsici.

2007 ◽  
Vol 97 (1) ◽  
pp. 37-43 ◽  
Author(s):  
S. Sanogo

Phytophthora capsici and Verticillium dahliae are two mycelial microorganisms associated with wilt symptoms on chile pepper (Capsicum annuum). Both pathogens occur in the same field and can infect a single plant. This study examined the nature of the co-occurrence of P. capsici and V. dahliae. Chile pepper plants were inoculated with each pathogen separately or with both pathogens concomitantly or sequentially. In concomitant inoculations, plants were inoculated with a mixture of zoospores of P. capsici and conidia of V. dahliae. In sequential inoculations, plants were inoculated with zoospores of P. capsici 4 days prior to inoculation with conidia of V. dahliae, or plants were inoculated with conidia of V. dahliae 4 days prior to inoculation with zoospores of P. capsici. Stem necrosis and leaf wilting were visible 3 to 4 days earlier in plants inoculated with both P. capsici and V. dahliae than in plants inoculated with P. capsici alone. Stem necrosis and generalized plant wilting were observed in plants inoculated with P. capsici alone, and stem necrosis, generalized plant wilting, and vascular discoloration were observed in plants inoculated with both P. capsici and V. dahliae by 21 days after inoculation. These symptoms were not observed in control plants or plants inoculated with V. dahliae alone. The frequency of recovery of V. dahliae from stems was ≈85 to 140% higher across inoculum levels when plants were inoculated with both P. capsici and V. dahliae than when plants were inoculated by V. dahliae alone. Similarly, the frequency of recovery of V. dahliae from roots was ≈13 to 40% higher across inoculum levels when plants were inoculated with both P. capsici and V. dahliae than when plants were inoculated by V. dahliae alone. There was no apparent antagonism between the two pathogens when they were paired on growth media. In general, when P. capsici and V. dahliae were paired on growth media, mycelial growth of each pathogen grown alone was not significantly different from mycelial growth when the pathogens were paired. Results suggest that wilt development is hastened by the presence of both P. capsici and V. dahliae in the same plants. The presence of P. capsici and V. dahliae in the same inoculum court enhanced infection and colonization of chile pepper by V. dahliae.


HortScience ◽  
2021 ◽  
Vol 56 (2) ◽  
pp. 254-260
Author(s):  
Asmita Nagila ◽  
Brian J. Schutte ◽  
Soum Sanogo ◽  
Omololu John Idowu

When applied before crop emergence, soil amendments with mustard seed meal (MSM) control some weeds and soilborne pathogens. MSM applications after crop emergence (herein “postemergence applications”) might be useful components of agricultural pest management programs, but research on postemergence applications of MSM is limited. The overall objective of this investigation was to develop a method for postemergence application of MSM that does not cause irrecoverable injury or yield loss in chile pepper (Capsicum annuum). To accomplish this objective, we conducted a sequence of studies that evaluated different MSM rates and application methods in the greenhouse and field. For the greenhouse study, we measured chile plant photosynthetic and growth responses to MSM applied postemergence on the soil surface or incorporated into soil. For the field study, we determined chile pepper fruit yield responses to MSM applied postemergence using a technique based on the method developed in greenhouse, and we confirmed that the MSM rates used in our study (4400 kg·ha−1 and 2200 kg·ha−1) inhibited the emergence of the weed Palmer amaranth (Amaranthus palmeri) and the growth of the pathogen Phytophthora capsici, which are common problems in chile pepper production in New Mexico. Greenhouse study results indicated that MSM at 4400 kg·ha−1 spread on the soil surface caused irrecoverable injury to chile pepper plants; however, chile pepper plants were not permanently injured by the following three treatments: 1) MSM at 4400 kg·ha−1 incorporated into soil, 2) MSM at 2200 kg·ha−1 spread on the soil surface, and 3) MSM at 2200 kg·ha−1 incorporated into soil. For the field study, postemergence, soil-incorporated applications of MSM at 4400 kg·ha−1 suppressed emergence of Palmer amaranth by 89% and reduced mycelial growth of Phytophthora capsica by 96%. Soil-incorporated applications of MSM at 2200 kg·ha−1 suppressed emergence of Palmer amaranth by 41.5% and reduced mycelial growth of Phytophthora capsica by 71%. Postemergence soil-incorporated applications of MSM did not reduce chile pepper yield compared with the control. The results of this study indicated that MSM applied after crop emergence and incorporated into soil can be a component of pest management programs for chile pepper.


Plant Disease ◽  
2006 ◽  
Vol 90 (3) ◽  
pp. 291-296 ◽  
Author(s):  
S. Sanogo ◽  
J. Carpenter

Statewide surveys of commercial chile pepper (Capsicum annuum) fields were conducted in New Mexico from 2002 to 2004 to gain information on the incidence of diseases with wilt symptoms and their causative agents. Fifty-nine fields were surveyed during the course of this 3-year study when chile pepper plants were at growth stages from green fruit to beginning red fruit. All fields were affected by diseases with wilt symptoms. The proportion of total field area exhibiting symptoms of wilt spanned from less than 1% to over 80%. Field diagnostics along with laboratory assays of wilted plants revealed that the wilting was caused by Phytophthora capsici and Verticillium dahliae. The two pathogens were both found in 80% of the fields, and occurred together in some wilted plants in 12% of the fields. Average incidence of plant infection (number of plants infected with P. capsici or V. dahliae out of 5 to 25 wilted plants sampled) varied from approximately 40 to 90% for P. capsici, and from 18 to 65% for V. dahliae. Incidence of plant infection by P. capsici was approximately 40% less in fields with drip irrigation than in fields with furrow irrigation. In contrast, incidence of plant infection by V. dahliae was approximately 32% greater under drip irrigation than under furrow irrigation. In pathogenicity tests, isolates of P. capsici and V. dahliae caused symptoms in inoculated chile pepper identical to those in field-grown chile pepper plants. Results indicate that diseases with wilt symptoms are well established in chile pepper production fields, with P. capsici and V. dahliae posing the most serious challenge to chile pepper producers in New Mexico.


2015 ◽  
Vol 105 (1) ◽  
pp. 119-125 ◽  
Author(s):  
S. L. Slinski ◽  
F. Zakharov ◽  
T. R. Gordon

Resin obtained from Pinus radiata and five monoterpene components of resin (limonene, α-pinene, β-pinene, camphene, and myrcene) were tested to determine their effects on mycelial growth and germination and survival of spores of Fusarium circinatum, the cause of pitch canker in pine, and F. temperatum, which is interfertile with F. circinatum but not pathogenic to pine. Averaged across all treatments, F. temperatum sustained the greatest reduction in radial growth (16.9 ± 0.02% of control). The greatest reduction in dry weight also occurred in F. temperatum (11.7 ± 0.01% of control), and all isolates of F. circinatum were significantly less affected (P < 0.05). Spore germination rates in a saturated atmosphere of monoterpenes were relatively high for all tested isolates but, when placed in direct contact with resin, spore survival was significantly greater for F. circinatum than for F. temperatum. Our results are consistent with the hypothesis that greater tolerance of resin is one factor distinguishing F. circinatum from the nonpathogenic F. temperatum. However, differential tolerance of monoterpene components of resin is not sufficient to explain the observed variation in virulence to pine in F. circinatum.


Author(s):  
Phillip A Lujan ◽  
Srijana Dura ◽  
Ivette Guzman ◽  
Mary Grace ◽  
Mary Lila ◽  
...  

Phytophthora blight, caused by Phytophthora capsici, is detrimental to chile peppers (Capsicum spp.). In this study, phenolics extracted from pecan (Carya illinoinensis) husk and shell, were foliarly applied to chile pepper (Capsicum annuum L., cultivar NM 6-4) to induce a resistance response against plant infection by P. capsici. Several pecan metabolite extractions were tested, and an acetic acid (2%) in aqueous methanol (80%) solution was the best extraction solvent, yielding total polyphenolic content of 290 mg/g dry weight from husk and 641 mg/g from shell. The phenolic extracts from husk and shell were applied as foliar sprays at different concentrations to chile plants inoculated with a virulent isolate of P. capsici. Chile plants treated with 1% phenolic husk or shell extracts or 0.1% salicylic acid remained alive throughout the study while plants subjected to all other treatments (including a water control treatment) died. Analyses of the extracts through spectrophotometry and high performance liquid chromatography indicated that the phenolic content in the extracts was largely made up of proanthocyanidins also known as condensed tannins. Pecan byproducts may be used as additional options for management of Phytophthora blight.


2021 ◽  
Vol 10 (1) ◽  
pp. ACCEPTED
Author(s):  
Muhammad Iqbal ◽  
Sumera Naz ◽  
Salik N. Khan ◽  
Shumaila Farooq ◽  
Ghulam Mohy-Ud-Din ◽  
...  

Culture and nutrition conditions of Myrothecium roridum Tode were optimized by conducting a series of interlined experiments on a growth medium, temperature, pH, and photoperiod. In contrast, relation of culture age with virulence was measured by fungal development on young leaves of bitter gourd. The physiological response was measured on colony radial growth and spore production. Among the six test growth media, i.e., nutrient agar (NA), potato dextrose agar (PDA), Czapek-Dox agar (CDA), glucose agar (GA), malt extract agar (MEA), and bitter gourd agar (BGA), the highest radial growth (77 mm) and the highest number of spores (239 × 106 spores/ml) were observed on PDA. Incubation temperature was evaluated between a range of 15-40 °C, and the highest colony growth (87 mm) was observed at 30 °C, whereas the highest spore production (315 × 106 spores/ml) was at 35 °C. Different pH levels, i.e., 5, 5.5, 6, 6.5, 7, and 7.5, were optimized, and the highest colony growth (87 mm) and spore production (504 × 106 spores/ml) was recorded at pH 5.0. Impact of photoperiod was studied, and the highest mycelial growth (88 mm) and maximum spore production (524 × 106 spores/ml) was observed at 16/8 h alternate light and dark period. It was concluded that the optimum conditions for mycelia growth and spore production was pH 5.0-6.0 and at 30 ± 2 °C in PDA with 16/8 h alternate light and dark photoperiod.


2015 ◽  
Vol 16 (4) ◽  
pp. 218-222 ◽  
Author(s):  
Michael E. Matheron ◽  
Martin Porchas

Bell and chile pepper plants are affected by the economically important disease Phytophthora blight, which is caused by the oomycete pathogen Phytophthora capsici. Greenhouse and field trials were conducted to evaluate and compare the ability of nine different fungicides to reduce development of the crown and root rot phase of Phytophthora blight and the resulting chile pepper plant death when applied at 2- and 4-week intervals. Overall, chile pepper plant mortality was significantly decreased in three greenhouse trials with soil applications of fungicide products containing ametoctradin + dimethomorph, cyazofamid, dimethomorph, ethaboxam, fluazinam, fluopicolide, mandipropamid, mefenoxam, and oxathiapiprolin. The same fungicides, excluding mandipropamid and oxathiapiprolin, also significantly reduced overall plant mortality in two field trials. No significant difference was found between 2- and 4-week fungicide application intervals with respect to chile pepper plant survival in any greenhouse or field trial. In general, the degree of reduction in chile pepper plant mortality was lower in field compared to greenhouse trials, probably due to the respective soil surface spray compared to soil drench method of fungicide application used in each instance. Accepted for publication 17 November 2015. Published 30 November 2015.


Plant Disease ◽  
2002 ◽  
Vol 86 (3) ◽  
pp. 292-297 ◽  
Author(s):  
M. E. Matheron ◽  
M. Porchas

The fungicide mefenoxam is registered for the control of Phytophthora blight of peppers caused by Phytophthora capsici. Isolates of the pathogen that are insensitive to mefenoxam, however, have been detected in some locations. Consequently, alternative methods are needed to control Phytophthora blight of peppers. Acibenzolar-S-methyl (ABM, Actigard) is a chemical activator of plant disease resistance that has potential for the management of Phytophthora blight of peppers. The effect of foliar applications of ABM on the development of root and crown rot on pepper plants grown in the greenhouse and inoculated with Phytophthora capsici or in soil naturally infested with the pathogen was evaluated. Inhibition of stem canker development on pepper cvs. Bell Tower and AZ9 after four treatments with ABM (75 μg/ml) was significantly greater than on plants receiving a single application of the chemical. Stem canker length on Bell Tower or AZ9 peppers was inhibited by 93.2 to 97.2% and 87.4 to 92.4% when plants were inoculated with P. capsici at 1 or 5 weeks, respectively, after the fourth application of ABM. Survival of chile pepper plants grown in field soil naturally infested with P. capsici was significantly increased by three foliar applications of ABM (75 μg/ml) compared with nontreated plants in all three trials when pots were watered daily and in two of three trials when pots were flooded for 48 h every 2 weeks. When soil was flooded every 2 weeks to establish conditions highly favorable for disease development, plants treated once with mefenoxam (100 μg/ml) survived significantly longer than those treated with ABM. On the other hand, when water was provided daily without periodic flooding to establish conditions less favorable for disease development, plant survival between the two chemicals was not different in two of three trials. Length of survival among chile pepper plants treated twice with 25, 50, or 75 μg/ml of ABM and grown in soil infested with P. capsici was not different. This work indicates that ABM could be an important management tool for Phytophthora root and crown rot on pepper plants.


Agronomy ◽  
2019 ◽  
Vol 9 (5) ◽  
pp. 260 ◽  
Author(s):  
Alessandro Calamai ◽  
Enrico Palchetti ◽  
Alberto Masoni ◽  
Lorenzo Marini ◽  
David Chiaramonti ◽  
...  

In recent years, biochar has generated global interest in the areas of sustainable agriculture and climate adaptation. The main positive effects of biochar were observed to be the most remarkable when nutrient-rich feedstock was used as the initial pyrolysis material (i.e., anaerobic digestate). In this study, the influence of solid anaerobic digestate and biochar that was produced by the slow pyrolysis of solid digestate was evaluated by comparing the differences in the crop growth performances of Pelargonium graveolens. The experiment was conducted in a greenhouse while using three different growth media (i.e., solid digestate, biochar, and vermiculite). The results indicated that: (i) the pyrolysis of solid digestate caused a reduction in the bulk density (−52%) and an increase in the pH (+16%) and electrical conductivity (+9.5%) in the derived biochar; (ii) the best crop performances (number of leaves, number of total branches, and plant dry weight) were found using biochar, particularly for plant dry weight (+11.4%) and essential oil content (+9.4%); (iii) the essential oil quality was slightly affected by the growth media; however, the main chemical components were found within the acceptable range that was set by international standard trade; and, iv) biochar induced the presence of leaf chlorosis in Pelargonium graveolens.


1972 ◽  
Vol 50 (11) ◽  
pp. 2097-2102 ◽  
Author(s):  
R. Hall ◽  
H. Ly

The development of microsclerotia of Verticillium dahliae from a few swollen hyaline cells on a hypha to a multicellular, pigmented "mature" structure is described and illustrated. A method for quantitatively estimating the amount of pigmented microsclerotial material in pure cultures was developed to study quantitative relations between mycelial growth and production of microsclerotial material in media containing different concentrations of glucose. At low glucose concentrations (0.6 to 10 mg/ml) microsclerotial material continued to increase after total dry weight of the cultures had reached a maximum, suggesting conversion of hyaline to pigmented material. At high glucose concentrations (20 to 60 mg/ml) the patterns of increase in total dry weight, microsclerotial material, and hyaline material were similar over a 4-week incubation period. Maximum production of both pigmented and hyaline materials occurred at a glucose concentration of 30 mg/ml (carbon/nitrogen ratio of 50/1).


Sign in / Sign up

Export Citation Format

Share Document