Fungicide efficacy on tar spot and yield of corn in the Midwestern United States

Author(s):  
Darcy E. P. Telenko ◽  
Martin I. Chilvers ◽  
Adam Byrne ◽  
Jill Check ◽  
Camila Rocco Da Silva ◽  
...  

Tar spot of corn caused by Phyllachora maydis has recently led to significant yield losses in the eastern corn belt of the Midwestern United States. Foliar fungicides containing quinone outside inhibitors(QoI), demethylation inhibitors(DMI), and succinate dehydrogenase inhibitors(SDHI) are commonly used to manage foliar diseases in corn. To mitigate the losses from tar spot thirteen foliar fungicides containing single or multiple modes of action (MOA/FRAC groups) were applied at their recommended rates in a single application at the standard tassel/silk growth stage timing to evaluate their efficacy against tar spot in a total of eight field trials in Illinois, Indiana, Michigan, and Wisconsin during 2019 and 2020. The single MOA fungicides included either a QoI or DMI. The dual MOA fungicides included a DMI with either a QoI or SDHI, and fungicides containing three MOAs included a QoI, DMI, and SDHI. Tar spot severity estimated as the percentage of leaf area covered by P. maydis stroma of the non-treated control at dent growth stage ranged from 1.6 to 23.3% on the ear leaf. Averaged across eight field trials all foliar fungicide treatments reduced tar spot severity, but only prothioconazole+trifloxystrobin, mefentrifluconazole+pyraclostrobin+fluxapyroxad, and mefentrifluconazole+pyraclostrobin significantly increased yield over the non-treated control. When comparing fungicide treatments by the number of MOAs foliar fungicide products that had two or three MOAs decreased tar spot severity over not treating and products with one MOA. The fungicide group that contained all three MOAs significantly increased yield over not treating with a fungicide or using a single MOA.

Plant Disease ◽  
2009 ◽  
Vol 93 (3) ◽  
pp. 243-248 ◽  
Author(s):  
T. A. Mueller ◽  
M. R. Miles ◽  
W. Morel ◽  
J. J. Marois ◽  
D. L. Wright ◽  
...  

Soybean rust, caused by Phakopsora pachyrhizi, is a devastating foliar disease of soybean that may cause significant yield losses if not managed by well-timed fungicide applications. To determine the effect of fungicide timing on soybean rust severity and soybean yield, field trials were completed in Paraguay (four locations), the United States (two locations), and Zimbabwe (one location) from 2005 to 2006. Treatments at each location included applications of tebuconazole, pyraclostrobin, or a combination of azoxystrobin + propiconazole, and in some locations pyraclostrobin + tebuconazole at the following soybean growth stages (GS): (i) GS R1 (beginning flowering), (ii) GS R3 (beginning pod), (iii) GS R5 (beginning seed), (iv) GS R1 + R3, (v) GS R3 + R5, and (vi) GS R1 + R3 + R5. Soybean yields from plots treated with fungicides were 16 to 114% greater than yields from no fungicide control plots in four locations in Paraguay, 12 to 55% greater in two locations in the United States, and 31% greater in Zimbabwe. In all locations, rust severity measured over time as area under the disease progress curve (AUDPC) was negatively correlated (r = –0.3, P < 0.0001) to yield. The effectiveness of any given treatment (timing of application and product applied) was often dependent on when rust was first detected and the intensity of its development. For example, when soybean rust was first observed before GS R3 (two locations in Paraguay), the plants in plots treated with a fungicide at GS R1 had the lowest AUPDC values and highest yields. When soybean rust was first observed after GS R3, plants treated with a fungicide at GS R3 and/or GS R5 had the lowest AUDPC values and highest yields with a few exceptions.


2020 ◽  
Author(s):  
Isaac Larsen ◽  
Evan Thaler ◽  
Qian Yu

&lt;p&gt;Soil erosion in agricultural landscapes reduces crop yields and influences the global carbon cycle. However, the magnitude of historical topsoil loss remains poorly quantified at large, regional spatial scales, hindering predictions of economic losses to farmers and quantification of the role soil erosion plays in the carbon cycle. We focus on one of the world&amp;#8217;s most productive agricultural regions, the Corn Belt of the Midwestern United States and use a novel spectral remote sensing method to map areas of complete topsoil loss in agricultural fields. Using high-resolution satellite images and the association between topsoil loss and topographic curvature, we use high resolution LiDAR topographic data to scale-up soil loss predictions to 3.7x10&lt;sup&gt;5&lt;/sup&gt; km&lt;sup&gt;2&lt;/sup&gt; of the Corn Belt. Our results indicate 34&amp;#177;12% of the region has completely lost topsoil as a result of agriculturally-accelerated erosion. Soil loss is most prevalent on convex slopes, and hilltops throughout the region are often completely denuded of topsoil indicating that tillage is a major driver of erosion, yet tillage erosion is not simulated in models used to assess soil loss trends in the U.S. We estimate that soil regenerative farming practices could restore 16&amp;#177;4.4 Pg of carbon to the exposed subsoil in the region. Soil regeneration would offset at least $2.5&amp;#177;0.3 billion in annual economic losses to farmers while generating a carbon sink equivalent to 8&amp;#177;3 years of U.S. CO&lt;sub&gt;2&lt;/sub&gt; emissions, or ~14% of the global soil carbon lost since the advent of agriculture.&amp;#160;&amp;#160;&lt;/p&gt;


2015 ◽  
Vol 25 (6) ◽  
pp. 757-761 ◽  
Author(s):  
Ethan T. Parker ◽  
J. Scott McElroy ◽  
Michael L. Flessner

Smooth crabgrass (Digitaria ischaemum) and goosegrass (Eleusine indica) are problematic weeds in creeping bentgrass (Agrostis stolonifera) because of limited herbicide options for postemergence (POST) control and turfgrass injury potential. Metamifop is a herbicide currently being considered for release to markets in the United States but information is lacking on the most effective rates and application timings for smooth crabgrass and goosegrass control in creeping bentgrass. Field trials were conducted in Auburn, AL in 2009 and 2013 to evaluate metamifop rates (200 to 800 g·ha−1) and single or sequential application timings compared with fenoxaprop (51 to 200 g·ha−1) at two different mowing heights. Metamifop applied twice and three times sequentially at 200 g·ha−1 provided the greatest smooth crabgrass (>97%) and goosegrass (>90%) control at rough (1½ inch) and green (1/8 inch) mowing heights without unacceptable creeping bentgrass injury at 56 days after initial treatment. All treatments caused <20% visible injury on creeping bentgrass at both mowing heights except the highest rate of metamifop. Smooth crabgrass control at the green mowing height was greater than at the rough mowing height, especially at lower metamifop rates with a single application.


2012 ◽  
Vol 92 (5) ◽  
pp. 913-922 ◽  
Author(s):  
Joseph P. Vink ◽  
Nader Soltani ◽  
Darren E. Robinson ◽  
François J. Tardif ◽  
Mark B. Lawton ◽  
...  

Vink, J. P., Soltani, N., Robinson, D. E., Tardif, F. J., Lawton, M. B. and Sikkema, P. H. 2012. Glyphosate-resistant giant ragweed ( Ambrosia trifida L.) control with preplant herbicides in soybean [ Glycine max (L.) Merr.]. Can. J. Plant Sci. 92: 913–922. Giant ragweed populations in southwestern Ontario have evolved resistance to glyphosate. Glyphosate-resistant (GR) giant ragweed interference in field crops can lead to significant yield losses. Eleven field trials [five with preplant (PP) burndown only and six with PP burndown plus residual herbicides] were conducted in 2010 and 2011 on Ontario farms with GR giant ragweed to evaluate the efficacy of various PP herbicides applied prior to soybean planting. Glyphosate applied at the recommended field dose failed to adequately control GR giant ragweed. The PP herbicides 2,4-D ester, cloransulam-methyl and saflufenacil applied alone and with glyphosate provided 97–99, 68–100 and 71–94% control, respectively and resulted in soybean yields equivalent to the weed-free check. Combinations of glyphosate plus cloransulam-methyl or linuron controlled GR giant ragweed 8 wk after application (WAA), 75–95 and 95–98%, respectively. Residual control with glyphosate plus linuron resulted in soybean yield equivalent to the weed-free check. Based on these results, GR giant ragweed can be controlled prior to soybean planting in southwestern Ontario.


2012 ◽  
Vol 26 (3) ◽  
pp. 422-428 ◽  
Author(s):  
Joseph P. Vink ◽  
Nader Soltani ◽  
Darren E. Robinson ◽  
François J. Tardif ◽  
Mark B. Lawton ◽  
...  

Glyphosate-resistant (GR) giant ragweed has been confirmed in Ontario, Canada. Giant ragweed is an extremely competitive weed and lack of control in soybean will lead to significant yield losses. Seed companies have developed new herbicide-resistant (HR) crop cultivars and hybrids that stack multiple HR traits. The objective of this research was to evaluate the efficacy of glyphosate and glyphosate plus dicamba tank mixes for the control of GR giant ragweed under Ontario environmental conditions in dicamba-tolerant (DT) soybean. Three field trials were established over a 2-yr period (2010 and 2011) on farms near Windsor and Belle River, ON. Treatments included glyphosate (900 g ae ha−1), dicamba (300 g ae ha−1), and dicamba (600 g ha−1) applied preplant (PP), POST, or sequentially in various combinations. Glyphosate applied PP, POST, or sequentially provided 22 to 68%, 40 to 47%, and 59 to 95% control of GR giant ragweed and reduced shoot dry weight 26 to 80%, 16 to 50%, and 72 to 98%, respectively. Glyphosate plus dicamba applied PP followed by glyphosate plus dicamba applied POST consistently provided 100% control of GR giant ragweed. DT soybean yield correlated with GR giant ragweed control. This is the first report in Canada of weed control in DT soybean, specifically for the control of GR giant ragweed. Results indicate that the use of dicamba in DT soybean will provide an effective option for the control of GR giant ragweed in Ontario.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Mitchell G Roth ◽  
Richard W Webster ◽  
Daren S Mueller ◽  
Martin I Chilvers ◽  
Travis R Faske ◽  
...  

Abstract Soybean (Glycine max L.) is a major crop grown in the United States but is susceptible to many diseases that cause significant yield losses each year. Consistent threats exist across both northern and southern production regions and include the soybean cyst nematode, charcoal rot, and seedling diseases. In contrast, significant soybean diseases like Phytophthora stem and root rot, sudden death syndrome, and Sclerotinia stem rot (white mold) are intermittent threats that can be heavily influenced by environmental factors. Additional threats to soybean production that have emerged in recent years as more common problems in soybean production include root-knot and reniform nematodes, frogeye leaf spot, and Diaporthe diseases. Disease in any crop will only occur when the three components of the disease triangle are present: a susceptible host, a virulent pathogen, and a conducive environment. If an environment is becoming more conducive for a particular disease, it is important that farmers and practitioners are prepared to manage the problem. The information in this review was compiled to help assist agriculturalists in being proactive in managing new soybean diseases that may be emerging in new areas. To do this, we provide: 1) an overview of the impact and disease cycle for major soybean diseases currently causing significant yield losses in the United States, 2) a comprehensive review of the current management strategies for each soybean disease, and 3) insights into the epidemiology of each pathogen, including the likelihood of outbreaks and expansion to additional geographic regions based on current trends in climate change.


2017 ◽  
Vol 31 (3) ◽  
pp. 380-386 ◽  
Author(s):  
L. Bo Braxton ◽  
John S. Richburg ◽  
Alan C. York ◽  
A. Stanley Culpepper ◽  
Robert A. Haygood ◽  
...  

Enlist™ cotton contains the aad-12 and pat genes that confer resistance to 2,4-D and glufosinate, respectively. Thirty-three field trials were conducted focused on Enlist cotton injury from glufosinate as affected by cotton growth stage, application rate, and single or sequential applications. Maximum injury from a single application of typical 1X (542 g ae ha-1) and 2X use rates was 3 and 13%, respectively, regardless of growth stage. Injury from sequential applications of 1X or 2X rates was equivalent to single applications. Similar injury was observed with four commercial formulations of glufosinate. Cotton yield was never affected by glufosinate. This research demonstrates Enlist™ cotton has robust resistance to glufosinate at rates at least twice the typical use rate when applied once or twice at growth stages ranging from 2 to 12 leaves.


2019 ◽  
Author(s):  
Ananda Y. Bandara ◽  
Dilooshi K. Weerasooriya ◽  
Shawn P. Conley ◽  
Carl A. Bradley ◽  
Tom W. Allen ◽  
...  

ABSTRACTFungicide use in the United States to manage soybean diseases has increased in recent years. The ability of fungicides to reduce disease-associated yield losses varies greatly depending on multiple factors. Nonetheless, historical data are useful to understand the broad sense and long-term trends related to fungicide use practices. In the current study, the relationship between estimated soybean yield losses due to selected foliar diseases and foliar fungicide use was investigated using annual data from 28 soybean growing states over the period of 2005 to 2015. At a national scale, a significant quadratic relationship was observed between total estimated yield losses and total fungicide use (R2 = 0.123, P < 0.0001) where yield losses initially increased, reached a plateau, and subsequently decreased with increasing fungicide use. The positive phase of the quadratic curve could be associated with insufficient amount of fungicides being used to manage targeted diseases, application of more-than-recommended prophylactic fungicides under no/low disease pressure, application of curative fungicides after economic injury level, and reduced fungicide efficacy due to a variety of factors such as unfavorable environmental conditions and resistance of targeted pathogen populations to the specific active ingredient applied. Interestingly, a significant quadratic relationship was also observed between total soybean production and total foliar fungicide use (R2= 0.36, P < 0.0001). The positive phase of the quadratic curve may suggest that factors like plant physiological changes, including increased chlorophyll content, photosynthetic rates, water use efficiency, and delayed senescence that have been widely reported to occur after application of certain foliar fungicides could have potentially contributed to enhanced yield. Therefore, the current study provides evidence of the potential usefulness of foliar fungicide applications to mitigate soybean yield losses associated with foliar diseases and their potential to positively impact soybean production/yield at national and regional scales although discrepancies to the general trends observed at national and regional scales do prevail at the local (state) level.


2010 ◽  
Vol 11 (1) ◽  
pp. 31 ◽  
Author(s):  
A. E. Dorrance ◽  
C. Cruz ◽  
D. Mills ◽  
R. Bender ◽  
M. Koenig ◽  
...  

Mid-season applications of Quadris with and without Warrior insecticide were evaluated in 2004 and 2005, and Headline, Folicur, Domark, or Headline plus Folicur were evaluated in 2006, 2007, and 2008 in 37 farm scale studies in Ohio. Producer cooperators selected fields, applied treatments at growth stage R3 and harvested fields. Each trial was rated at growth stage R5 or R6 for incidence and severity of brown spot and frogeye leaf spot. Aphids and foliar disease incidence was low in 2004. Soybean aphids were counted at stage R5 in 2005. Brown spot severity was reduced significantly by Headline in seven of the 13 locations. In the absence of soybean aphid, a single application of fungicide(s) increased yield significantly in only six of the 28 locations, of which only three had yield increases greater than 4.2 bu/acre. Populations of soybean aphids were high during 2005 at nine locations, and an insecticide application increased yield significantly at eight locations. These data indicated that foliar diseases and aphids contribute to yield loss in soybeans. However, more studies are required to determine action thresholds for brown spot and frogeye leaf spot. Accepted for publication 14 October 2010. Published 22 January 2010.


Plant Disease ◽  
2019 ◽  
Vol 103 (11) ◽  
pp. 2804-2811 ◽  
Author(s):  
Bhupendra Acharya ◽  
Thomas N. O’Quinn ◽  
Wesley Everman ◽  
Hillary L. Mehl

Sorghum anthracnose (Colletotrichum sublineola) reduces grain yield up to 50% but suggested management tactics have not yet been developed for the mid-Atlantic United States, where warm, wet conditions favor disease. Under factorial arrangement, five fungicides plus a nontreated control and four application timings were compared for foliar anthracnose control, yield, and profitability of fungicide use in grain sorghum over eight site-years in Virginia and North Carolina. Anthracnose severity was rated at the hard dough stage, and grain yield was determined at harvest. Every percent increase in disease severity resulted in yield losses of 27 to 85 kg/ha. Pyraclostrobin and pyraclostrobin plus fluxapyroxad reduced anthracnose (P < 0.01), and three applications resulted in less disease and greater yield compared with single applications (P < 0.01). However, three applications exceed the labeled maximum application for the fungicides and are not economical. Among single applications, boot or flowering timings reduced disease, and flowering applications resulted in the overall greatest yield. Results suggest that when disease onset occurs at or prior to boot, a single application of pyraclostrobin-containing fungicide at or just prior to flowering reduces anthracnose, protects yield, and increases income. However, when disease is absent or severity is low prior to flowering, fungicide application may not be profitable.


Sign in / Sign up

Export Citation Format

Share Document