scholarly journals Resistance to Heterodera filipjevi and H. avenae in Winter Wheat is Conferred by Different QTL

2020 ◽  
Vol 110 (2) ◽  
pp. 472-482 ◽  
Author(s):  
Lei Cui ◽  
Dan Qiu ◽  
Lei Sun ◽  
Yu Sun ◽  
Yongkang Ren ◽  
...  

The coexistence of cereal cyst nematode (CCN) species Heterodera avenae and H. filipjevi, often involving multiple pathotypes, is a limiting factor for wheat production in China. Some of the known genes for resistance to CCN are not effective against both nematode species, hence complicating breeding efforts to develop CCN-resistant wheat cultivars. Here, we demonstrate that the CCN resistance in wheat cultivar Madsen to both Heterodera spp. is controlled by different genetic loci, both of which originated from Aegilops ventricosa. A new quantitative trait locus (QTL), QCre-ma7D, was identified and localized in a 3.77-Mb genomic region on chromosome arm 7DL, which confers resistance to H. filipjevi. QCre-ma2A on chromosome arm 2AS corresponds to CCN resistance gene Cre5 and confers resistance to H. avenae. This QTL is a new locus on chromosome arm 7DL and is designated Cre9. Three Kompetitive allele-specific PCR markers (BS00150072, BS00021745, and BS00154302) were developed for molecular marker-assisted selection of Cre9 and locally adapted wheat lines with resistance to both nematode species were developed. QCre-ma2A on chromosome arm 2AS corresponds to CCN resistance gene Cre5 and confers resistance to H. avenae. The identification of different loci underlying resistance to H. filipjevi and H. avenae and the development of adapted resistant entries will facilitate breeding of wheat cultivars that are resistant to these devastating nematodes in China.

Nematology ◽  
2011 ◽  
Vol 13 (5) ◽  
pp. 539-552 ◽  
Author(s):  
Richard W. Smiley ◽  
Guiping Yan ◽  
John N. Pinkerton

Abstract The cereal cyst nematode, Heterodera avenae, occurs in at least seven western states of the USA and reduces grain yield in localised regions and in selected crop management systems. Virulence phenotypes for H. avenae populations in North America have not been reported. Nine individual assays in six experiments were conducted to determine the reactions of barley, oat and wheat cultivars to five H. avenae populations in the Pacific Northwest (PNW) states of Idaho, Oregon and Washington. Three populations were evaluated for virulence to 23 entries of the 'International Test Assortment for Defining Cereal Cyst Nematode Pathotypes', plus selected local cultivars and entries representing a greater diversity of resistance genes. The virulence phenotype(s) for populations of H. avenae in the PNW did not correspond to any of the 11 pathotypes defined by the Test Assortment. Five PNW populations exhibited affinities with Group 2 but were not defined by pathotypes Ha12 and Ha22. Reproduction was prevented or greatly inhibited by barley carrying the Rha3 resistance gene and by most carriers of Rha2 resistance, and by selected oat cultivars with multigenic resistance. Wheat cultivars carrying the Cre1 resistance gene were highly effective in suppressing H. avenae reproduction. Current PNW wheat cultivars do not carry the Cre1 resistance gene. Crosses between Ouyen, an Australian bread wheat with Cre1 resistance, and several PNW wheat cultivars were resistant. The CreR gene also prevented H. avenae reproduction in the trial where it was tested. Intermediate levels of reproduction occurred on wheat cultivars carrying the Cre5, Cre7 and Cre8 resistance genes, each of which was considered useful for pyramiding into cultivars with Cre1 resistance. This research identified genetic resources of value in PNW cereal crop breeding programmes.


Plant Disease ◽  
2013 ◽  
Vol 97 (12) ◽  
pp. 1611-1619 ◽  
Author(s):  
Guiping Yan ◽  
Richard W. Smiley ◽  
Patricia A. Okubara ◽  
Andrea M. Skantar

Heterodera avenae and H. filipjevi are economically important cyst nematodes that restrict production of cereal crops in the Pacific Northwest United States and elsewhere in the world. Identification of these two species is critical for recommending and implementing effective management practices. Primers were designed from the internal transcribed spacer (ITS) regions of H. avenae and H. filipjevi ribosomal DNA. The primers were highly specific when examined on target isolates but did not amplify DNA from nontarget Heterodera, Globodera, Meloidogyne, Pratylenchus, and other nematode species tested. Polymerase chain reaction (PCR) and amplification conditions were established, and H. avenae and H. filipjevi were clearly distinguished by PCR fragments of 242 and 170 bp, respectively. Robust PCR amplification was achieved with DNA extracted from a single egg or second-stage juvenile (J2) using a laboratory-made worm lysis buffer, and DNA from 0.5 egg or J2 using a commercial kit. The PCR assays were successfully employed for differentiation of H. filipjevi and H. avenae populations collected from eight locations in three Pacific Northwest states. This is the first report of a species-specific ITS PCR assay to detect and identify H. filipjevi. The assays for both species will enhance diagnosis of cereal cyst nematode species in infested fields.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Min Fan ◽  
Fang Miao ◽  
Haiyan Jia ◽  
Genqiao Li ◽  
Carol Powers ◽  
...  

AbstractVernalization genes underlying dramatic differences in flowering time between spring wheat and winter wheat have been studied extensively, but little is known about genes that regulate subtler differences in flowering time among winter wheat cultivars, which account for approximately 75% of wheat grown worldwide. Here, we identify a gene encoding anO-linkedN-acetylglucosamine (O-GlcNAc) transferase (OGT) that differentiates heading date between winter wheat cultivars Duster and Billings. We clone thisTaOGT1gene from a quantitative trait locus (QTL) for heading date in a mapping population derived from these two bread wheat cultivars and analyzed in various environments. Transgenic complementation analysis shows that constitutive overexpression ofTaOGT1bfrom Billings accelerates the heading of transgenic Duster plants.TaOGT1 is able to transfer anO-GlcNAc group to wheat proteinTaGRP2. Our findings establish important roles forTaOGT1in winter wheat in adaptation to global warming in the future climate scenarios.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Xingyi Wang ◽  
Hui Liu ◽  
Kadambot H. M. Siddique ◽  
Guijun Yan

Abstract Background Pre-harvest sprouting (PHS) in wheat can cause severe damage to both grain yield and quality. Resistance to PHS is a quantitative trait controlled by many genes located across all 21 wheat chromosomes. The study targeted a large-effect quantitative trait locus (QTL) QPhs.ccsu-3A.1 for PHS resistance using several sets previously developed near-isogenic lines (NILs). Two pairs of NILs with highly significant phenotypic differences between the isolines were examined by RNA sequencing for their transcriptomic profiles on developing seeds at 15, 25 and 35 days after pollination (DAP) to identify candidate genes underlying the QTL and elucidate gene effects on PHS resistance. At each DAP, differentially expressed genes (DEGs) between the isolines were investigated. Results Gene ontology and KEGG pathway enrichment analyses of key DEGs suggested that six candidate genes underlie QPhs.ccsu-3A.1 responsible for PHS resistance in wheat. Candidate gene expression was further validated by quantitative RT-PCR. Within the targeted QTL interval, 16 genetic variants including five single nucleotide polymorphisms (SNPs) and 11 indels showed consistent polymorphism between resistant and susceptible isolines. Conclusions The targeted QTL is confirmed to harbor core genes related to hormone signaling pathways that can be exploited as a key genomic region for marker-assisted selection. The candidate genes and SNP/indel markers detected in this study are valuable resources for understanding the mechanism of PHS resistance and for marker-assisted breeding of the trait in wheat.


2005 ◽  
Vol 95 (2) ◽  
pp. 158-165 ◽  
Author(s):  
A. Pegard ◽  
G. Brizzard ◽  
A. Fazari ◽  
O. Soucaze ◽  
P. Abad ◽  
...  

In the pepper Capsicum annuum CM334, which is used by breeders as a source of resistance to Phytophthora spp. and potyviruses, a resistance gene entirely suppresses reproduction of the root-knot nematode (Meloidogyne spp.). The current study compared the histological responses of this resistant line and a susceptible cultivar to infection with the three most damaging root-knot nematodes: M. arenaria, M. incognita, or M. javanica. Resistance of CM334 to root-knot nematodes was associated with unidentified factors that limited nematode penetration and with post-penetration biochemical responses, including the hypersensitive response, which apparently blocked nematode migration and thereby prevented juvenile development and reproduction. High-performance liquid chromatography analysis suggested that phenolic compounds, especially chlorogenic acid, may be involved in CM334 resistance. The response to infection in the resistant line varied with root-knot nematode species and was correlated with nematode behavior and pathogenicity in the susceptible cultivar: nematode species that quickly reached the vascular cylinder and initiated feeding sites in the susceptible cultivar were quickly recognized in CM334 and stopped in the epidermis or cortex. After comparing our data with those from other resistant pepper lines, we suggest that timing of the resistance response and the mechanism of resistance vary with plant genotype, resistance gene, and root-knot nematode species.


Genome ◽  
2003 ◽  
Vol 46 (2) ◽  
pp. 224-234 ◽  
Author(s):  
C E Durel ◽  
L Parisi ◽  
F Laurens ◽  
W E Van de Weg ◽  
R Liebhard ◽  
...  

Scab, caused by the fungus Venturia inaequalis, is one of the most important diseases of apple (Malus × domestica). The major resistance gene, Vf, has been widely used in apple breeding programs, but two new races of the fungus (races 6 and 7) are able to overcome this gene. A mapped F1 progeny derived from a cross between the cultivars Prima and Fiesta has been inoculated with two monoconidial strains of race 6. These strains originated from sporulating leaves of 'Prima' and a descendant of 'Prima' that were grown in an orchard in northern Germany. 'Prima' carries the Vf resistance gene, whereas 'Fiesta' lacks Vf. A large variation in resistance and (or) susceptibility was observed among the individuals of the progeny. Several quantitative trait loci (QTLs) for resistance were identified that mapped on four genomic regions. One of them was located in the very close vicinity of the Vf resistance gene on linkage group LG-1 of the 'Prima' genetic map. This QTL is isolate specific because it was only detected with one of the two isolates. Two out of the three other genomic regions were identified with both isolates (LG-11 and LG-17). On LG-11, a QTL effect was detected in both parents. The genetic dissection of this QTL indicated a favourable intra-locus interaction between some parental alleles.Key words: Malus × domestica, partial resistance, Venturia inaequalis, resistance breakdown, quantitative trait locus.


2012 ◽  
Vol 78 (7) ◽  
pp. 2435-2442 ◽  
Author(s):  
Marie Foulongne-Oriol ◽  
Anne Rodier ◽  
Jean-Michel Savoie

ABSTRACTDry bubble, caused byLecanicillium fungicola, is one of the most detrimental diseases affecting button mushroom cultivation. In a previous study, we demonstrated that breeding for resistance to this pathogen is quite challenging due to its quantitative inheritance. A second-generation hybrid progeny derived from an intervarietal cross between a wild strain and a commercial cultivar was characterized forL. fungicolaresistance under artificial inoculation in three independent experiments. Analysis of quantitative trait loci (QTL) was used to determine the locations, numbers, and effects of genomic regions associated with dry-bubble resistance. Four traits related to resistance were analyzed. Two to four QTL were detected per trait, depending on the experiment. Two genomic regions, on linkage group X (LGX) and LGVIII, were consistently detected in the three experiments. The genomic region on LGX was detected for three of the four variables studied. The total phenotypic variance accounted for by all QTL ranged from 19.3% to 42.1% over all traits in all experiments. For most of the QTL, the favorable allele for resistance came from the wild parent, but for some QTL, the allele that contributed to a higher level of resistance was carried by the cultivar. Comparative mapping with QTL for yield-related traits revealed five colocations between resistance and yield component loci, suggesting that the resistance results from both genetic factors and fitness expression. The consequences for mushroom breeding programs are discussed.


2021 ◽  
Vol 37 (2) ◽  
pp. 194-199
Author(s):  
Liang Chai ◽  
Jinfang Zhang ◽  
Wannakuwattewaduge Gerard Dilantha Fernando ◽  
Haojie Li ◽  
Xiaoqin Huang ◽  
...  

Genetics ◽  
1984 ◽  
Vol 106 (2) ◽  
pp. 309-324
Author(s):  
Anne Crossway ◽  
Jan Dvořák

ABSTRACT Metaphase I (MI) pairing of wheat homologous chromosomes is usually reduced in hybrids between cultivars relative to the parental inbred lines. Previous work suggested that this phenomenon is caused by polymorphism in nucleotide sequences (nonstructural chromosome variation) among wheat cultivars. The present work investigated the distribution of this variation along three selected chromosome arms between cultivars Chinese Spring and Cheyenne. Chinese Spring ditelosomics 3Aq, 6Ap and 6Bp were crossed with disomic substitutions of Cheyenne chromosomes 3A, 6A and 6B in Chinese Spring, respectively. The resulting F1 plants, called substituted monotelodisomics, were crossed with the respective Chinese Spring monosomics, producing potentially "recombinant" substituted monosomics. When these "recombinant" chromosomes were combined with the parental Chinese Spring telosomes, marked reductions in mean telosome-pairing frequency were found compared with the corresponding Chinese Spring monotelodisomics. The mean pairing frequencies of the "recombinant" chromosomes showed a continuous distribution between those of the substituted and Chinese Spring monotelodisomics. The results suggest that the nonstructural variation that reduces MI pairing between chromosomes of different wheat cultivars is not localized in a specific site but distributed along each chromosome arm. Little variation was found among monotelodisomics for either the number of ring bivalents per cell or the number of univalents other than those constituting the heteromorphic pair. This implies that the reductions in MI pairing between the Cheyenne and Chinese Spring chromosomes are caused by something residing within these specific chromosomes that does not affect the pairing of the remaining Chinese Spring chromosomes in the same cell. Furthermore, the absence of parental types among the "recombinant"-substituted monotelodisomics suggests that the sequences involved in the variation studied here are capable of converting heterohomologous chromosomes to something intermediate in nature in the span of only a single generation.


Sign in / Sign up

Export Citation Format

Share Document