scholarly journals A Hypersensitivity-Like Response to Meloidogyne graminicola in Rice (Oryza sativa)

2018 ◽  
Vol 108 (4) ◽  
pp. 521-528 ◽  
Author(s):  
Ngan Thi Phan ◽  
Dirk De Waele ◽  
Mathias Lorieux ◽  
Lizhong Xiong ◽  
Stephane Bellafiore

Meloidogyne graminicola is a major plant-parasitic nematode affecting rice cultivation in Asia. Resistance to this nematode was found in the African rice genotypes Oryza glaberrima and O. longistaminata; however, due to interspecific hybrid sterility, the introgression of resistance genes in the widely consumed O. sativa varieties remains challenging. Recently, resistance was found in O. sativa and, here, we report for the first time the histological and genetic characterization of the resistance to M. graminicola in Zhonghua 11, an O. sativa variety. Bright-light microscopy and fluorescence observations of the root tissue of this variety revealed that the root cells surrounding the nematode displayed a hypersensitivity-like reaction with necrotic cells at early stages of infection when nematodes are migrating in the root’s mesoderm. An accumulation of presumably phenolic compounds in the nematodes’ neighboring root cells was also observed. In addition, at a later stage of infection, not only were few feeding sites observed but also the giant cells were underdeveloped, underlining an incompatible interaction. Furthermore, we generated a hybrid O. sativa population by crossing Zhonghua 11 with the susceptible O. sativa variety IR64 in order to describe the genetic background of this resistance. Our data suggested that the resistance to M. graminicola infection was qualitative rather than quantitative and, therefore, major resistance genes must be involved in this infection process. The full characterization of the defense mechanism and the preliminary study of the genetic inheritance of novel sources of resistance to Meloidogyne spp. in rice constitute a major step toward their use in crop breeding.

2011 ◽  
Vol 2011 ◽  
pp. 1-6 ◽  
Author(s):  
Richard L. Fery ◽  
Philip D. Dukes

Field studies were conducted to characterize the genetic nature of resistance to southern blight (caused bySclerotium rolfsiiSacc.) exhibited by the cowpea [Vigna unguiculata(L.) Walp.] cultivars Carolina Cream and Brown Crowder and to determine if a genetic relationship exists for this resistance between the two cultivars. Examination of the comparative frequency distributions of the parental and progeny populations of the “Carolina Cream” x “Magnolia Blackeye” and “Brown Crowder” x “Magnolia Blackeye” crosses and the corresponding segregation data indicates that the southern blight resistances exhibited by “Carolina Cream” and “Brown Crowder” are conditioned by single dominant genes. Examination of the segregation data from the parental and progeny populations of the “Carolina Cream” x “Brown Crowder” cross suggests that the two resistance genes are not allelic. The availability of each of the resistance genes in cultivar-type genetic backgrounds should allow for rapid incorporation of southern blight resistance genes into other cowpea cultivars by the application of conventional plant breeding methodologies.


Agriculture ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1017
Author(s):  
Jerzy H. Czembor ◽  
Elżbieta Czembor

Powdery mildew on barley, caused by the pathogen Blumeria graminis f. sp. hordei, occurs worldwide and can result in severe yield loss. Germplasm of barley, including landraces, commercial cultivars, wild relatives and breeding lines are stored in more than 200 institutions. There is a need for characterization of this germplasm in terms of resistance to biotic and abiotic stresses. This is necessary in order to use specific accessions in breeding programs. In the present study, 129 barley landraces originated from Turkey and provided by the ICARDA genebank were tested for resistance to powdery mildew. Seedling resistance tests after inoculation with 19 differentiated isolates of B. graminis f. sp. hordei were used to postulate the presence of resistance genes. From the 129 landraces studied, plants of 19 (14.7%) of them showed resistance to infection with powdery mildew. Based on preliminary tests from these 19 landraces, 25 resistant single plant lines were selected for testing with differential powdery mildew isolates. Seven lines were resistant to all 19 isolates used. However, only one line (5583-1-4) showed resistance scores of zero against all isolates used. It is likely that this line possesses unknown, but highly effective genes for resistance. In five resistant lines it was not possible to postulate the presence of specific resistance genes. In 19 lines the presence of the genes Mlp, Mlk, Mlh, Mlg, Ml(CP), Mlat, Mla3, Mla6, Mla7 and Mla22 were postulated. These new sources of highly effective powdery mildew resistance in barley landraces from Turkey could be successfully used in breeding programs.


2010 ◽  
Vol 36 (1) ◽  
pp. 109-114 ◽  
Author(s):  
Hong ZHANG ◽  
Zhi-Long REN ◽  
Yin-Gang HU ◽  
Chang-You WANG ◽  
Wan-Quan JI

Agronomy ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 546
Author(s):  
Pilar Sabuquillo ◽  
Jaime Cubero

Xanthomonasarboricola pv. pruni (Xap) causes bacterial spot of stone fruit and almond, an important plant disease with a high economic impact. Biofilm formation is one of the mechanisms that microbial communities use to adapt to environmental changes and to survive and colonize plants. Herein, biofilm formation by Xap was analyzed on abiotic and biotic surfaces using different microscopy techniques which allowed characterization of the different biofilm stages compared to the planktonic condition. All Xap strains assayed were able to form real biofilms creating organized structures comprised by viable cells. Xap in biofilms differentiated from free-living bacteria forming complex matrix-encased multicellular structures which become surrounded by a network of extracellular polymeric substances (EPS). Moreover, nutrient content of the environment and bacterial growth have been shown as key factors for biofilm formation and its development. Besides, this is the first work where different cell structures involved in bacterial attachment and aggregation have been identified during Xap biofilm progression. Our findings provide insights regarding different aspects of the biofilm formation of Xap which improve our understanding of the bacterial infection process occurred in Prunus spp and that may help in future disease control approaches.


Nematology ◽  
2018 ◽  
Vol 20 (4) ◽  
pp. 299-318
Author(s):  
Ma. Teodora Nadong Cabasan ◽  
Arvind Kumar ◽  
Stéphane Bellafiore ◽  
Dirk De Waele

Summary Five populations of Meloidogyne graminicola isolated from different rice-growing areas in the Philippines were characterised. The populations showed little phenotypic variability of second-stage juveniles and female perineal pattern. Differences in reproduction among M. graminicola populations were not observed on mature resistant Oryza glaberrima varieties ‘TOG5674’, ‘TOG5675’, ‘RAM131’ and ‘CG14’, or on susceptible O. sativa varieties ‘IR64’ and ‘UPLRi-5’. In all infected rice varieties, plant growth and yield-contributing traits showed no differences among the populations. A search on M. graminicola populations from the Philippines for single-nucleotide polymorphism on the sequences of Internal Transcribed Spacer (ITS) of rDNA genes and mtDNA indicated only few points of heteroplasmy. Nematode reproduction and disease induction of the five M. graminicola populations in the Philippines exerted the same level of aggressiveness and virulence. The absence of resistance-breaking populations of M. graminicola is important for the maintenance of durability of resistance to this important rice pathogen.


2013 ◽  
Vol 80 (4) ◽  
pp. 1482-1488 ◽  
Author(s):  
Jing Yang ◽  
Chao Wang ◽  
Jinyu Wu ◽  
Li Liu ◽  
Gang Zhang ◽  
...  

ABSTRACTThe genusExiguobacteriumcan adapt readily to, and survive in, diverse environments. Our study demonstrated thatExiguobacteriumsp. strain S3-2, isolated from marine sediment, is resistant to five antibiotics. The plasmid pMC1 in this strain carries seven putative resistance genes. We functionally characterized these resistance genes inEscherichia coli, and genes encoding dihydrofolate reductase and macrolide phosphotransferase were considered novel resistance genes based on their low similarities to known resistance genes. The plasmid G+C content distribution was highly heterogeneous. Only the G+C content of one block, which shared significant similarity with a plasmid fromExiguobacterium arabatum, fit well with the mean G+C content of the host. The remainder of the plasmid was composed of mobile elements with a markedly lower G+C ratio than the host. Interestingly, five mobile elements located on pMC1 showed significant similarities to sequences found in pathogens. Our data provided an example of the link between resistance genes in strains from the environment and the clinic and revealed the aggregation of antibiotic resistance genes in bacteria isolated from fish farms.


Sign in / Sign up

Export Citation Format

Share Document