scholarly journals Sampling for IPM Decision Making: Where Should We Invest Time and Resources?

1999 ◽  
Vol 89 (11) ◽  
pp. 1104-1111 ◽  
Author(s):  
Jan P. Nyrop ◽  
Michael R. Binns ◽  
Wopke van der Werf

Guides for making crop protection decisions based on assessments of pest abundance or incidence are cornerstones of many integrated pest management systems. Much research has been devoted to developing sample plans for use in these guides. The development of sampling plans has usually focused on collecting information on the sampling distribution of the pest, describing this sampling distribution with a mathematical model, formulating a sample plan, and sometimes, but not always, evaluating the performance of the proposed sample plan. For crop protection decision making, classification of density or incidence is usually more appropriate than estimation. When classification is done, the average outcome of classification (the operating characteristic) is frequently robust to large changes in the sampling distribution, including estimates of the variance of pest counts, and to sample size. In contrast, the critical density, or critical incidence, about which classifications are made, has a large influence on the operating characteristic. We suggest that rather than investing resources in elaborate descriptions of sampling distributions, or in fine-tuning sample size to achieve desired levels of precision, greater emphasis should be placed on characterizing pest densities that signal the need for management action and on designing decision guides that will be adopted by practitioners.

2009 ◽  
Vol 103 (1) ◽  
pp. 34-42
Author(s):  
Madhuri S. Mulekar ◽  
Murray H. Siegel

To understand inference, students must understand sampling distributions. Using simulations can help.


2006 ◽  
Vol 90 (517) ◽  
pp. 40-49 ◽  
Author(s):  
David A. L. Wilson ◽  
Barry Martin

Although a number of earlier researchers had used the geometric mean as a convenient statistic to summarise observational data, Gallon is usually credited with being the first to consider its sampling distribution. At Gallon’s request, in 1879 McAlister undertook a pioneering mathematical study, which eventually led to the modern large-sample theory. However, some sixty years elapsed before much attention was paid to small samples from particular parent distributions. Since about 1960, new techniques have made it possible to derive exact sampling distributions for a much wider class of parent distributions. Some work has been done on producing approximate general relationships between the moments of the parent distribution and those of the sample geometric mean but they are of very limited value for small samples and even now it is difficult to find any general description of how the distribution from which a sample is drawn will affect the distribution of its geometric mean and how this will vary with sample size.


2020 ◽  
Vol 10 (4) ◽  
pp. 1245 ◽  
Author(s):  
Valeria Maeda-Gutiérrez ◽  
Carlos E. Galván-Tejada ◽  
Laura A. Zanella-Calzada ◽  
José M. Celaya-Padilla ◽  
Jorge I. Galván-Tejada ◽  
...  

Tomato plants are highly affected by diverse diseases. A timely and accurate diagnosis plays an important role to prevent the quality of crops. Recently, deep learning (DL), specifically convolutional neural networks (CNNs), have achieved extraordinary results in many applications, including the classification of plant diseases. This work focused on fine-tuning based on the comparison of the state-of-the-art architectures: AlexNet, GoogleNet, Inception V3, Residual Network (ResNet) 18, and ResNet 50. An evaluation of the comparison was finally performed. The dataset used for the experiments is contained by nine different classes of tomato diseases and a healthy class from PlantVillage. The models were evaluated through a multiclass statistical analysis based on accuracy, precision, sensitivity, specificity, F-Score, area under the curve (AUC), and receiving operating characteristic (ROC) curve. The results present significant values obtained by the GoogleNet technique, with 99.72% of AUC and 99.12% of sensitivity. It is possible to conclude that this significantly success rate makes the GoogleNet model a useful tool for farmers in helping to identify and protect tomatoes from the diseases mentioned.


2000 ◽  
Vol 5 (1) ◽  
pp. 19-27 ◽  
Author(s):  
Ronny Swain

The paper describes the development of the 1998 revision of the Psychological Society of Ireland's Code of Professional Ethics. The Code incorporates the European Meta-Code of Ethics and an ethical decision-making procedure borrowed from the Canadian Psychological Association. An example using the procedure is presented. To aid decision making, a classification of different kinds of stakeholder (i.e., interested party) affected by ethical decisions is offered. The author contends (1) that psychologists should assert the right, which is an important aspect of professional autonomy, to make discretionary judgments, (2) that to be justified in doing so they need to educate themselves in sound and deliberative judgment, and (3) that the process is facilitated by a code such as the Irish one, which emphasizes ethical awareness and decision making. The need for awareness and judgment is underlined by the variability in the ethical codes of different organizations and different European states: in such a context, codes should be used as broad yardsticks, rather than precise templates.


2021 ◽  
Vol 34 (1) ◽  
Author(s):  
Zhe Yang ◽  
Dejan Gjorgjevikj ◽  
Jianyu Long ◽  
Yanyang Zi ◽  
Shaohui Zhang ◽  
...  

AbstractSupervised fault diagnosis typically assumes that all the types of machinery failures are known. However, in practice unknown types of defect, i.e., novelties, may occur, whose detection is a challenging task. In this paper, a novel fault diagnostic method is developed for both diagnostics and detection of novelties. To this end, a sparse autoencoder-based multi-head Deep Neural Network (DNN) is presented to jointly learn a shared encoding representation for both unsupervised reconstruction and supervised classification of the monitoring data. The detection of novelties is based on the reconstruction error. Moreover, the computational burden is reduced by directly training the multi-head DNN with rectified linear unit activation function, instead of performing the pre-training and fine-tuning phases required for classical DNNs. The addressed method is applied to a benchmark bearing case study and to experimental data acquired from a delta 3D printer. The results show that its performance is satisfactory both in detection of novelties and fault diagnosis, outperforming other state-of-the-art methods. This research proposes a novel fault diagnostics method which can not only diagnose the known type of defect, but also detect unknown types of defects.


Diagnostics ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1052
Author(s):  
Leang Sim Nguon ◽  
Kangwon Seo ◽  
Jung-Hyun Lim ◽  
Tae-Jun Song ◽  
Sung-Hyun Cho ◽  
...  

Mucinous cystic neoplasms (MCN) and serous cystic neoplasms (SCN) account for a large portion of solitary pancreatic cystic neoplasms (PCN). In this study we implemented a convolutional neural network (CNN) model using ResNet50 to differentiate between MCN and SCN. The training data were collected retrospectively from 59 MCN and 49 SCN patients from two different hospitals. Data augmentation was used to enhance the size and quality of training datasets. Fine-tuning training approaches were utilized by adopting the pre-trained model from transfer learning while training selected layers. Testing of the network was conducted by varying the endoscopic ultrasonography (EUS) image sizes and positions to evaluate the network performance for differentiation. The proposed network model achieved up to 82.75% accuracy and a 0.88 (95% CI: 0.817–0.930) area under curve (AUC) score. The performance of the implemented deep learning networks in decision-making using only EUS images is comparable to that of traditional manual decision-making using EUS images along with supporting clinical information. Gradient-weighted class activation mapping (Grad-CAM) confirmed that the network model learned the features from the cyst region accurately. This study proves the feasibility of diagnosing MCN and SCN using a deep learning network model. Further improvement using more datasets is needed.


Proceedings ◽  
2020 ◽  
Vol 78 (1) ◽  
pp. 5
Author(s):  
Raquel de Melo Barbosa ◽  
Fabio Fonseca de Oliveira ◽  
Gabriel Bezerra Motta Câmara ◽  
Tulio Flavio Accioly de Lima e Moura ◽  
Fernanda Nervo Raffin ◽  
...  

Nano-hybrid formulations combine organic and inorganic materials in self-assembled platforms for drug delivery. Laponite is a synthetic clay, biocompatible, and a guest of compounds. Poloxamines are amphiphilic four-armed compounds and have pH-sensitive and thermosensitive properties. The association of Laponite and Poloxamine can be used to improve attachment to drugs and to increase the solubility of β-Lapachone (β-Lap). β-Lap has antiviral, antiparasitic, antitumor, and anti-inflammatory properties. However, the low water solubility of β-Lap limits its clinical and medical applications. All samples were prepared by mixing Tetronic 1304 and LAP in a range of 1–20% (w/w) and 0–3% (w/w), respectively. The β-Lap solubility was analyzed by UV-vis spectrophotometry, and physical behavior was evaluated across a range of temperatures. The analysis of data consisted of response surface methodology (RMS), and two kinds of machine learning (ML): multilayer perceptron (MLP) and support vector machine (SVM). The ML techniques, generated from a training process based on experimental data, obtained the best correlation coefficient adjustment for drug solubility and adequate physical classifications of the systems. The SVM method presented the best fit results of β-Lap solubilization. In silico tools promoted fine-tuning, and near-experimental data show β-Lap solubility and classification of physical behavior to be an excellent strategy for use in developing new nano-hybrid platforms.


Author(s):  
Mohammed N. Al-Kabi ◽  
Heider A. Wahsheh ◽  
Izzat M. Alsmadi

Sentiment Analysis/Opinion Mining is associated with social media and usually aims to automatically identify the polarities of different points of views of the users of the social media about different aspects of life. The polarity of a sentiment reflects the point view of its author about a certain issue. This study aims to present a new method to identify the polarity of Arabic reviews and comments whether they are written in Modern Standard Arabic (MSA), or one of the Arabic Dialects, and/or include Emoticons. The proposed method is called Detection of Arabic Sentiment Analysis Polarity (DASAP). A modest dataset of Arabic comments, posts, and reviews is collected from Online social network websites (i.e. Facebook, Blogs, YouTube, and Twitter). This dataset is used to evaluate the effectiveness of the proposed method (DASAP). Receiver Operating Characteristic (ROC) prediction quality measurements are used to evaluate the effectiveness of DASAP based on the collected dataset.


Sign in / Sign up

Export Citation Format

Share Document