scholarly journals Measuring splash-dispersal of a major wheat pathogen in the field

Author(s):  
Petteri Karisto ◽  
Frédéric Suffert ◽  
Alexey Mikaberidze

Capacity for dispersal is a fundamental fitness component of plant pathogens. Characterization of plant pathogen dispersal is important for understanding how pathogen populations change in time and space. We devised a systematic approach to measure and analyze rain splash-driven dispersal of plant pathogens in field conditions, using the major fungal wheat pathogen Zymoseptoria tritici as a case study. We inoculated field plots of wheat (Triticum aestivum) with two distinct Z. tritici strains. Next, we measured disease intensity as counts of fruiting bodies (pycnidia) using automated image analysis. These measurements characterized primary disease gradients, which we used to estimate effective dispersal of the pathogen population. Genotyping of re-isolated pathogen strains with strain-specific PCR-reaction confirmed the conclusions drawn from phenotypic data. Consistently with controlled environment studies, we found that the characteristic scale of dispersal is tens of centimeters. We analyzed the data using a spatially-explicit mathematical model that incorporates the spatial extent of the source, rather than assuming a point source, which allows for a more accurate estimation of dispersal kernels. We employed bootstrapping methods for statistical testing and adopted a two-dimensional hypotheses test based on kernel density estimation, enabling more robust inference compared to standard methods. We report the first estimates of dispersal kernels of the pathogen in field conditions. However, repeating the experiment in other environments would lead to more robust conclusions. We put forward advanced methodology that paves the way to further measurements of plant pathogen dispersal in field conditions, which can inform spatially targeted plant disease management.

Author(s):  
Petteri Karisto ◽  
Frédéric Suffert ◽  
Alexey Mikaberidze

AbstractCapacity for dispersal is a fundamental fitness component of plant pathogens. Empirical characterization of plant pathogen dispersal is of prime importance for understanding how plant pathogen populations change in time and space. We measured dispersal of Zymoseptoria tritici in natural environment. Primary disease gradients were produced by rain-splash driven dispersal and subsequent transmission via asexual pycnidiospores from infected source. To achieve this, we inoculated field plots of wheat (Triticum aestivum) with two distinct Z. tritici strains and a 50/50 mixture of the two strains. We measured effective dispersal of the Z. tritici population based on pycnidia counts using automated image analysis. The data were analyzed using a spatially-explicit mathematical model that takes into account the spatial extent of the source. We employed robust bootstrapping methods for statistical testing and adopted a two-dimensional hypotheses test based on the kernel density estimation of the bootstrap distribution of parameter values. Genotyping of re-isolated pathogen strains with strain-specific PCR-reaction further confirmed the conclusions drawn from the phenotypic data. The methodology presented here can be applied to other plant pathosystems.We achieved the first estimates of the dispersal kernel of the pathogen in field conditions. The characteristic spatial scale of dispersal is tens of centimeters – consistent with previous studies in controlled conditions. Our estimation of the dispersal kernel can be used to parameterize epidemiological models that describe spatial-temporal disease dynamics within individual wheat fields. The results have the potential to inform spatially targeted control of crop diseases in the context of precision agriculture.


mBio ◽  
2020 ◽  
Vol 11 (5) ◽  
Author(s):  
Lukas Meile ◽  
Jules Peter ◽  
Guido Puccetti ◽  
Julien Alassimone ◽  
Bruce A. McDonald ◽  
...  

ABSTRACT Dynamic changes in transcription profiles are key for the success of pathogens in colonizing their hosts. In many pathogens, genes associated with virulence, such as effector genes, are located in regions of the genome that are rich in transposable elements and heterochromatin. The contribution of chromatin modifications to gene expression in pathogens remains largely unknown. Using a combination of a reporter gene-based approach and chromatin immunoprecipitation, we show that the heterochromatic environment of effector genes in the fungal plant pathogen Zymoseptoria tritici is a key regulator of their specific spatiotemporal expression patterns. Enrichment in trimethylated lysine 27 of histone H3 dictates the repression of effector genes in the absence of the host. Chromatin decondensation during host colonization, featuring a reduction in this repressive modification, indicates a major role for epigenetics in effector gene induction. Our results illustrate that chromatin modifications triggered during host colonization determine the specific expression profile of effector genes at the cellular level and, hence, provide new insights into the regulation of virulence in fungal plant pathogens. IMPORTANCE Fungal plant pathogens possess a large repertoire of genes encoding putative effectors, which are crucial for infection. Many of these genes are expressed at low levels in the absence of the host but are strongly induced at specific stages of the infection. The mechanisms underlying this transcriptional reprogramming remain largely unknown. We investigated the role of the genomic environment and associated chromatin modifications of effector genes in controlling their expression pattern in the fungal wheat pathogen Zymoseptoria tritici. Depending on their genomic location, effector genes are epigenetically repressed in the absence of the host and during the initial stages of infection. Derepression of effector genes occurs mainly during and after penetration of plant leaves and is associated with changes in histone modifications. Our work demonstrates the role of chromatin in shaping the expression of virulence components and, thereby, the interaction between fungal pathogens and their plant hosts.


2020 ◽  
Vol 5 (1) ◽  
pp. 404-440 ◽  
Author(s):  
Mehrdad Alizadeh ◽  
Yalda Vasebi ◽  
Naser Safaie

AbstractThe purpose of this article was to give a comprehensive review of the published research works on biological control of different fungal, bacterial, and nematode plant diseases in Iran from 1992 to 2018. Plant pathogens cause economical loss in many agricultural products in Iran. In an attempt to prevent these serious losses, chemical control measures have usually been applied to reduce diseases in farms, gardens, and greenhouses. In recent decades, using the biological control against plant diseases has been considered as a beneficial and alternative method to chemical control due to its potential in integrated plant disease management as well as the increasing yield in an eco-friendly manner. Based on the reported studies, various species of Trichoderma, Pseudomonas, and Bacillus were the most common biocontrol agents with the ability to control the wide range of plant pathogens in Iran from lab to the greenhouse and field conditions.


2021 ◽  
Author(s):  
Lulu Qiao ◽  
Chi Lan ◽  
Luca Capriotti ◽  
Audrey Ah-Fong ◽  
Jonatan Nino Sanchez ◽  
...  

AbstractRecent discoveries show that fungi can take up environmental RNA, which can then silence fungal genes through environmental RNA interference. This discovery prompted the development of Spray-Induced Gene Silencing (SIGS) for plant disease management. In this study, we aimed to determine the efficacy of SIGS across a variety of eukaryotic microbes. We first examined the efficiency of RNA uptake in multiple pathogenic and non-pathogenic fungi, and an oomycete pathogen. We observed efficient double-stranded RNA (dsRNA) uptake in the fungal plant pathogens Botrytis cinerea, Sclerotinia sclerotiorum, Rhizoctonia solani, Aspergillus niger, and Verticillium dahliae, but no uptake in Colletotrichum gloeosporioides, and weak uptake in a beneficial fungus, Trichoderma virens. For the oomycete plant pathogen, Phytophthora infestans, RNA uptake was limited, and varied across different cell types and developmental stages. Topical application of dsRNA targeting virulence-related genes in the pathogens with high RNA uptake efficiency significantly inhibited plant disease symptoms, whereas the application of dsRNA in pathogens with low RNA uptake efficiency did not suppress infection. Our results have revealed that dsRNA uptake efficiencies vary across eukaryotic microbe species and cell types. The success of SIGS for plant disease management can largely be determined by the pathogen RNA uptake efficiency.


2021 ◽  
Vol 10 (15) ◽  
pp. e296101522465
Author(s):  
Erika Valente de Medeiros ◽  
Lucas Figueira da Silva ◽  
Jenifer Sthephanie Araújo da Silva ◽  
Diogo Paes da Costa ◽  
Carlos Alberto Fragoso de Souza ◽  
...  

A better understanding of the use of biochar with Trichoderma spp. (TRI), considered the most studied tool for biological control, would increase our ability to set priorities. However, no studies exist using the two inputs on plant disease management. Here, we hypothesized that biochar and TRI would be used for the management of soilborne plant pathogens, mainly due to changes in soil properties and its interactions. To test this hypothesis, this review assesses papers that used biochar and TRI against plant diseases and we summarize the handling mechanisms for each input. Biochar acts by mechanisms: induction to plant resistance, sorption of allelopathic and fungitoxic compounds, increase of beneficial microorganisms, changes the soil properties that promote health and nutrient availability. Trichoderma as biocontrol agents by different mechanisms: mycoparasitism, enzyme and secondary metabolic production, plant promoter agent, natural decomposition agent, and biological agent of bioremediation. Overall, our findings expand our knowledge about the reuse of wastes transformed in biochar combined with Trichoderma has potential perspective to formulate products as alternative management tool of plant disease caused by soilborne fungal pathogen and add important information that can be suitable for development of strategy for use in the global health concept.


2020 ◽  
Vol 12 (3) ◽  
pp. 1188 ◽  
Author(s):  
Yahuza Lurwanu ◽  
Yan-Ping Wang ◽  
Waheed Abdul ◽  
Jiasui Zhan ◽  
Li-Na Yang

Fungicide is one of the main approaches used in agriculture to manage plant diseases for food production, but their effectiveness can be reduced due to the evolution of plant pathogens. Understanding the genetics and evolutionary processes responsible for the development of fungicide resistance is a key to food production and social sustainability. In this study, we used a common garden experiment to examine the source of genetic variation, natural selection, and temperature contributing to the development of azoxystrobin resistance in Phytophthora infestans and infer sustainable ways of plant disease management in future. We found that plasticity contributed to ~40% of phenotypic variation in azoxystrobin sensitivity while heritability accounted for 16%. Further analysis indicated that overall population differentiation in azoxystrobin sensitivity (QST) was significantly greater than the overall population differentiation in simple sequence repeat (SSR) marker (FST), and the P. infestans isolates demonstrated higher level of azoxystrobin sensitivity at the higher experimental temperature. These results suggest that changes in target gene expression, enzymatic activity, or metabolic rate of P. infestans play a more important role in the adaptation of the pathogen to azoxystrobin resistance than that of mutations in target genes. The development of azoxystrobin resistance in P. infestans is likely driven by diversifying selection for local adaptation, and elevated temperature associated with global warming in the future may increase the effectiveness of using azoxystrobin to manage P. infestans. The sustainable approaches for increasing disease control effectiveness and minimizing the erosion of the fungicide efficacy are proposed.


Plant Disease ◽  
2016 ◽  
Vol 100 (2) ◽  
pp. 483-489 ◽  
Author(s):  
Laura E. Hayes ◽  
Kathryn E. Sackett ◽  
Nicole P. Anderson ◽  
Michael D. Flowers ◽  
Christopher C. Mundt

Plant pathogens pose a major challenge to maintaining food security in many parts of the world. Where major plant pathogens are fungal, fungicide resistance can often thwart regional control efforts. Zymoseptoria tritici, causal agent of Septoria tritici blotch, is a major fungal pathogen of wheat that has evolved resistance to chemical control products in four fungicide classes in Europe. Compared with Europe, however, fungicide use has been less and studies of fungicide resistance have been infrequent in North American Z. tritici populations. Here, we confirm first reports of Z. tritici fungicide resistance evolution in western Oregon through analysis of the effects of spray applications of propiconazole and an azoxystrobin + propiconazole mixture during a single growing season. Frequencies of strobilurin-resistant isolates, quantified as proportions of G143A mutants, were significantly higher in azoxystrobin-sprayed plots compared with plots with no azoxystrobin treatment at two different locations and were significantly higher in plots of a moderately resistant cultivar than in plots of a susceptible cultivar. Thus, it appears that western Oregon Z. tritici populations have the potential to evolve levels of strobilurin resistance similar to those observed in Europe. Although the concentration of propiconazole required to reduce pathogen growth by 50% values were numerically greater for isolates collected from plots receiving propiconazole than in control plots, this effect was not significant (P > 0.05).


2020 ◽  
Vol 7 (1) ◽  
Author(s):  
Erin H. Hill ◽  
Peter S. Solomon

Abstract Background The fungal pathogen Zymoseptoria tritici is a significant constraint to wheat production in temperate cropping regions around the world. Despite its agronomic impacts, the mechanisms allowing the pathogen to asymptomatically invade and grow in the apoplast of wheat leaves before causing extensive host cell death remain elusive. Given recent evidence of extracellular vesicles (EVs)—secreted, membrane-bound nanoparticles containing molecular cargo—being implicated in extracellular communication between plants and fungal pathogen, we have initiated an in vitro investigation of EVs from this apoplastic fungal wheat pathogen. We aimed to isolate EVs from Z. tritici broth cultures and examine their protein composition in relation to the soluble protein in the culture filtrate and to existing fungal EV proteomes. Results Zymoseptoria tritici EVs were isolated from broth culture filtrates using differential ultracentrifugation (DUC) and examined with transmission electron microscopy (TEM) and nanoparticle tracking analysis (NTA). Z. tritici EVs were observed as a heterogeneous population of particles, with most between 50 and 250 nm. These particles were found in abundance in the culture filtrates of viable Z. tritici cultures, but not heat-killed cultures incubated for an equivalent time and of comparable biomass. Bottom-up proteomic analysis using LC–MS/MS, followed by stringent filtering revealed 240 Z. tritici EV proteins. These proteins were distinct from soluble proteins identified in Z. tritici culture filtrates, but were similar to proteins identified in EVs from other fungi, based on sequence similarity analyses. Notably, a putative marker protein recently identified in Candida albicans EVs was also consistently detected in Z. tritici EVs. Conclusion We have shown EVs can be isolated from the devastating fungal wheat pathogen Z. tritici and are similar to protein composition to previously characterised fungal EVs. EVs from human pathogenic fungi are implicated in virulence, but the role of EVs in the interaction of phytopathogenic fungi and their hosts is unknown. These in vitro analyses provide a basis for expanding investigations of Z. tritici EVs in planta, to examine their involvement in the infection process of this apoplastic wheat pathogen and more broadly, advance understanding of noncanonical secretion in filamentous plant pathogens.


2007 ◽  
Vol 73 (16) ◽  
pp. 5162-5172 ◽  
Author(s):  
Wei-Jen Chen ◽  
François Delmotte ◽  
Sylvie Richard Cervera ◽  
Lisette Douence ◽  
Charles Greif ◽  
...  

ABSTRACT Quinone outside inhibiting (QoI) fungicides represent one of the most widely used groups of fungicides used to control agriculturally important fungal pathogens. They inhibit the cytochrome bc 1 complex of mitochondrial respiration. Soon after their introduction onto the market in 1996, QoI fungicide-resistant isolates were detected in field plant pathogen populations of a large range of species. However, there is still little understanding of the processes driving the development of QoI fungicide resistance in plant pathogens. In particular, it is unknown whether fungicide resistance occurs independently in isolated populations or if it appears once and then spreads globally by migration. Here, we provide the first case study of the evolutionary processes that lead to the emergence of QoI fungicide resistance in the plant pathogen Plasmopara viticola. Sequence analysis of the complete cytochrome b gene showed that all resistant isolates carried a mutation resulting in the replacement of glycine by alanine at codon 143 (G143A). Phylogenetic analysis of a large mitochondrial DNA fragment including the cytochrome b gene (2,281 bp) across a wide range of European P. viticola isolates allowed the detection of four major haplotypes belonging to two distinct clades, each of which contains a different QoI fungicide resistance allele. This is the first demonstration that a selected substitution conferring resistance to a fungicide has occurred several times in a plant-pathogen system. Finally, a high population structure was found when the frequency of QoI fungicide resistance haplotypes was assessed in 17 French vineyards, indicating that pathogen populations might be under strong directional selection for local adaptation to fungicide pressure.


Sign in / Sign up

Export Citation Format

Share Document