scholarly journals Atrazine Enhances Progesterone Production Through Activation of Multiple Signaling Pathways in FSH-Stimulated Rat Granulosa Cells: Evidence for Premature Luteinization1

2014 ◽  
Vol 91 (5) ◽  
Author(s):  
Kristina Pogrmic-Majkic ◽  
Dragana Samardzija ◽  
Svetlana Fa ◽  
Jelena Hrubik ◽  
Branka Glisic ◽  
...  
Endocrinology ◽  
2015 ◽  
Vol 156 (12) ◽  
pp. 4684-4694 ◽  
Author(s):  
Lanlan Fang ◽  
Hsun-Ming Chang ◽  
Jung-Chien Cheng ◽  
Yiping Yu ◽  
Peter C. K. Leung ◽  
...  

Growth differentiation factor-8 (GDF-8) has been recently shown to be expressed in human granulosa cells, and the mature form of GDF-8 protein can be detected in the follicular fluid. However, the biological function and significance of this growth factor in the human ovary remains to be determined. Here, we investigated the effects of GDF-8 on steroidogenic enzyme expression and the potential mechanisms of action in luteinized human granulosa cells. We demonstrated that treatment with GDF-8 did not affect the mRNA levels of P450 side-chain cleavage enzyme and 3β-hydroxysteroid dehydrogenase, whereas it significantly down-regulated steroidogenic acute regulatory protein (StAR) expression and decreased progesterone production. The suppressive effect of GDF-8 on StAR expression was abolished by the inhibition of the TGF-β type I receptor. In addition, treatment with GDF-8 activated both Smad2/3 and ERK1/2 signaling pathways. Furthermore, knockdown of activin receptor-like kinase 5 reversed the effects of GDF-8 on Smad2/3 phosphorylation and StAR expression. The inhibition of Smad3 or ERK1/2 signaling pathways attenuated the GDF-8-induced down-regulation of StAR and production of progesterone. Interestingly, the concentrations of GDF-8 were negatively correlated with those of progesterone in human follicular fluid. These results indicate a novel autocrine function of GDF-8 to down-regulate StAR expression and decrease progesterone production in luteinized human granulosa cells, most likely through activin receptor-like kinase 5-mediated Smad3 and ERK1/2 signaling pathways. Our findings suggest that granulosa cells might play a critical role in the regulation of progesterone production to prevent premature luteinization during the final stage of folliculogenesis.


1989 ◽  
Vol 264 (31) ◽  
pp. 18356-18362 ◽  
Author(s):  
M Mitsuhashi ◽  
T Mitsuhashi ◽  
D G Payan

Gene ◽  
2021 ◽  
Vol 771 ◽  
pp. 145370
Author(s):  
Prajitha Mohandas Edathara ◽  
Shivakanth Chintalapally ◽  
Venkata Krishna Kanth Makani ◽  
Chitrakshi Pant ◽  
Suresh Yerramsetty ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document