Retrieval Enhances Higher and Lower Order Thinking in Anatomy and Physiology Students

2020 ◽  
Vol 34 (S1) ◽  
pp. 1-1
Author(s):  
John Dobson
2015 ◽  
Vol 39 (3) ◽  
pp. 158-166 ◽  
Author(s):  
Saramarie Eagleton

Lecturers have reverted to using a “blended” approach when teaching anatomy and physiology. Student responses as to how this contributes to their learning satisfaction were investigated using a self-administered questionnaire. The questionnaire consisted of closed- and open-ended questions that were based on three determinants of learning satisfaction: perceived course learnability, learning community support, and perceived learning effectiveness. Regarding course learnability, students responded positively on questions regarding the relevance of the subject for their future careers. However, students identified a number of distractions that prevented them from paying full attention to their studies. As far as learning community support was concerned, respondents indicated that they were more comfortable asking a peer for support if they were unsure of concepts than approaching the lecturing staff. Most of the students study in their second language, and this was identified as a stumbling block for success. There was a difference in opinion among students regarding the use of technology for teaching and learning of anatomy and physiology. From students' perceptions regarding learning effectiveness, it became clear that students' expectations of anatomy and physiology were unrealistic; they did not expect the module to be so comprehensive. Many of the students were also “grade oriented” rather than “learning oriented” as they indicated that they were more concerned about results than “owning” the content of the module. Asking students to evaluate aspects of the teaching and learning process have provided valuable information to improve future offerings of anatomy and physiology.


2013 ◽  
Vol 37 (2) ◽  
pp. 184-191 ◽  
Author(s):  
John L. Dobson

Although a great deal of empirical evidence has indicated that retrieval practice is an effective means of promoting learning and memory, very few studies have investigated the strategy in the context of an actual class. The primary purpose of this study was to determine if a series of very brief retrieval quizzes could significantly improve the retention of previously tested information throughout an anatomy and physiology course. A second purpose was to determine if there were any significant differences between expanding and uniform patterns of retrieval that followed a standardized initial retrieval delay. Anatomy and physiology students were assigned to either a control group or groups that were repeatedly prompted to retrieve a subset of previously tested course information via a series of quizzes that were administered on either an expanding or a uniform schedule. Each retrieval group completed a total of 10 retrieval quizzes, and the series of quizzes required (only) a total of 2 h to complete. Final retention of the exam subset material was assessed during the last week of the semester. There were no significant differences between the expanding and uniform retrieval groups, but both retained an average of 41% more of the subset material than did the control group (ANOVA, F = 129.8, P = 0.00, ηp2 = 0.36). In conclusion, retrieval practice is a highly efficient and effective strategy for enhancing the retention of anatomy and physiology material.


Author(s):  
Kristine Claire B. Andaya ◽  
Daryl Joyce F. Salvania ◽  
Jerwin Ross R. Pugal ◽  
Joe Jhardee M. San Jose ◽  
Ryan Richard H. Guadana

2021 ◽  
Vol 45 (2) ◽  
pp. 327-332
Author(s):  
John M. Pattillo

This paper describes the design, construction, and use of an open-source hardware and software tool intended to help Anatomy and Physiology students test their knowledge of muscle actions and joint movements. Orientation sensors are attached to a model skeleton to turn the skeleton into an interactive, physical model for teaching limb movements. A detailed description of the construction of the tool is provided, as well as the configuration and use of companion software.


2016 ◽  
Vol 40 (1) ◽  
pp. 70-78 ◽  
Author(s):  
Mari K. Hopper

Calls for reform in science education have promoted active learning as a means to improve student engagement (SENG). SENG is generally acknowledged to have a positive effect on student learning, satisfaction, and retention. A validated 14-question survey was used to assess SENG in a variety of upper- and lower-level physiology courses, including 100-level Anatomy and Physiology 1, 300-level Animal Physiology, 400-level Advanced Physiology, and 500-level Medical Physiology courses. The results indicated that SENG did not vary consistently by course level, format, or curriculum. The highest levels of SENG were found in the Advanced Physiology course, which included SENG as a primary objective of the course. Physiology student SENG scores were compared with National Survey of Student Engagement (NSSE) scores. The results demonstrated that physiology students enrolled in the Anatomy and Physiology 1 course reported lower levels of SENG than first-year students that completed the NSSE. Students enrolled in the Advanced Physiology course reported higher levels of SENG than fourth-year students that completed the NSSE. Assessment of SENG offers insights as to how engaged students are, identifies where efforts may best be applied to enhance SENG, and provides a baseline measure for future comparisons after targeted course modifications.


2018 ◽  
Vol 42 (2) ◽  
pp. 225-231
Author(s):  
Andrew M. Petzold ◽  
Robert L. Dunbar

The ability to clearly disseminate scientific knowledge is a skill that is necessary for any undergraduate student within the sciences. Traditionally, this is accomplished through the instruction of scientific presentation or writing with a focus on peer-to-peer communication at the expense of teaching communication aimed at a nonscientific audience. One of the ramifications of focusing on peer-to-peer communication has presented itself as an apprehension toward scientific knowledge within the general populace. This apprehension can be seen in a variety of venues, including the traditional media, popular culture, and education, which generally paint scientists as aloof and with an inability to discuss scientific issues to anyone other than other scientists. This paper describes a curriculum designed to teach Introduction to Anatomy and Physiology students the tools necessary for communicating complex concepts that were covered during the semester using approachable language. Students were assessed on their word usage in associated writing activities, the student’s ability to reduce complexity of their statements, and performance in an informal scientific presentation to a lay audience. Results showed that this pedagogical approach has increased students’ ability to reduce the complexity of their language in both a written and oral format. This, in turn, led to evaluators reporting greater levels of understanding of the topic presented following the presentation.


Sign in / Sign up

Export Citation Format

Share Document