scholarly journals The Crosstalk between Tumor Stroma Components and ESR1 Mutant Breast Cancer Cells Remodels Tumor Microenvironment and Enhances Tumor Growth and Progression

2021 ◽  
Vol 35 (S1) ◽  
Author(s):  
Amanda Caruso ◽  
Luca Gelsomino ◽  
Guowei Gu ◽  
Salvatore Panza ◽  
Cinzia Giordano ◽  
...  
Cell Cycle ◽  
2012 ◽  
Vol 12 (1) ◽  
pp. 172-182 ◽  
Author(s):  
Rosa Sanchez-Alvarez ◽  
Ubaldo E. Martinez-Outschoorn ◽  
Rebecca Lamb ◽  
James Hulit ◽  
Anthony Howell ◽  
...  

2021 ◽  
Author(s):  
Ping Zhou ◽  
Bo Liu ◽  
Mingming Luan ◽  
Na Li ◽  
Bo Tang

Cancer cell migration and invasion are initial steps for tumor metastasis that increases patient mortality. Tumor microenvironment is characterized by hypoxic and low nutrient-containing. Previous studies have suggested that hypoxia...


2021 ◽  
Author(s):  
SANJAY MISHRA ◽  
Manish Charan ◽  
Rajni Kant Shukla ◽  
Pranay Agarwal ◽  
Swati Misri ◽  
...  

Abstract Background: Metastasis is the major cause of mortality in breast cancer; however, the molecular mechanisms remain elusive. In our previous study, we demonstrated that S100A7/RAGE mediates breast cancer growth and metastasis by recruitment of tumor-associated macrophages. However, the downstream S100A7-mediated inflammatory oncogenic signaling cascade that enhances breast tumor growth and metastasis by generating the immunosuppressive tumor microenvironment (iTME) has not been studied. In this present study, we aimed to investigate the S100A7 and cPLA2 cross-talk in enhancing tumor growth and metastasis through enhancing the iTME.Methods: Human breast cancer tissue and plasma samples were used to analyze the expression of S100A7, cPLA2, and PGE2 titer. S100A7-overexpressing or downregulated human metastatic breast cancer cells were used to evaluate the S100A7-mediated downstream signaling mechanisms. Bi-transgenic mS100a7a15 overexpression, TNBC C3(1)/Tag transgenic, and humanized patient-derived xenograft mouse models and cPLA2 inhibitor (AACOCF3) were used to investigate the role of S100A7/cPLA2/PGE2 signaling in tumor growth and metastasis. Additionally, CODEX, a highly advanced multiplexed imaging was employed to delineate the effect of S100A7/cPLA2 inhibition on the recruitment of various immune cells.Results: S100A7 and cPLA2 are highly expressed and positively correlated in malignant breast cancer patients. S100A7/RAGE upregulates cPLA2/PGE2 axis in aggressive breast cancer cells. Furthermore, S100A7 is positively correlated with PGE2 in breast cancer patients. Moreover, cPLA2 pharmacological inhibition suppressed S100A7-mediated tumor growth and metastasis in multiple pre-clinical models. Mechanistically, S100A7-mediated activation of cPLA2 enhances the recruitment of immunosuppressive myeloid cells by increasing PGE2 to fuel breast cancer growth and its secondary spread. We revealed that cPLA2 inhibitor mitigates S100A7-mediated breast tumorigenicity by suppressing the iTME. Furthermore, CODEX imaging data showed that cPLA2 inhibition increased the infiltration of CD4+/CD8+ T cells in the TME. Analysis of metastatic breast cancer samples revealed a positive correlation between S100A7/cPLA2 with CD163+ tumor-associated M2-macrophages.Conclusions: Our study shows that cross-talk between S100A7 and cPLA2 plays an important role in enhancing breast tumor growth and metastasis by generating an immunosuppressive tumor microenvironment and reducing infiltration of T cells. Furthermore, S100A7 could be used as a novel non-invasive prognostic marker and cPLA2 inhibitors as promising drugs against S100A7-overexpressing metastatic breast cancer.


Cancers ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 3415
Author(s):  
Ge Dong ◽  
Gui Ma ◽  
Rui Wu ◽  
Jinming Liu ◽  
Mingcheng Liu ◽  
...  

Breast cancer is a common malignancy, but the understanding of its cellular and molecular mechanisms is limited. ZFHX3, a transcription factor with many homeodomains and zinc fingers, suppresses prostatic carcinogenesis but promotes tumor growth of liver cancer cells. ZFHX3 regulates mammary epithelial cells’ proliferation and differentiation by interacting with estrogen and progesterone receptors, potent breast cancer regulators. However, whether ZFHX3 plays a role in breast carcinogenesis is unknown. Here, we found that ZFHX3 promoted the proliferation and tumor growth of breast cancer cells in culture and nude mice; and higher expression of ZFHX3 in human breast cancer specimens was associated with poorer prognosis. The knockdown of ZFHX3 in ZFHX3-high MCF-7 cells decreased, and ZFHX3 overexpression in ZFHX3-low T-47D cells increased the proportion of breast cancer stem cells (BCSCs) defined by mammosphere formation and the expression of CD44, CD24, and/or aldehyde dehydrogenase 1. Among several transcription factors that have been implicated in BCSCs, MYC and TBX3 were transcriptionally activated by ZFHX3 via promoter binding, as demonstrated by luciferase-reporter and ChIP assays. These findings suggest that ZFHX3 promotes breast cancer cells’ proliferation and tumor growth likely by enhancing BCSC features and upregulating MYC, TBX3, and others.


Sign in / Sign up

Export Citation Format

Share Document