scholarly journals Activation of pattern recognition receptors in brown adipocytes induce proinflammatory genes and suppress uncoupling protein 1 mRNA expression

2013 ◽  
Vol 27 (S1) ◽  
Author(s):  
Jiyoung Bae ◽  
Carolyn J Ricciardi ◽  
Jiangang Chen ◽  
Ling Zhao
2014 ◽  
Vol 306 (10) ◽  
pp. C918-C930 ◽  
Author(s):  
Jiyoung Bae ◽  
Carolyn J. Ricciardi ◽  
Debora Esposito ◽  
Slavko Komarnytsky ◽  
Pan Hu ◽  
...  

Pattern recognition receptors (PRR), Toll-like receptors (TLR), and nucleotide-oligomerization domain-containing proteins (NOD) play critical roles in mediating inflammation and modulating functions in white adipocytes in obesity. However, the role of PRR activation in brown adipocytes, which are recently found to be present in adult humans, has not been studied. Here we report that mRNA of TLR4, TLR2, NOD1, and NOD2 is upregulated, paralleled with upregulated mRNA of inflammatory cytokines and chemokines in the brown adipose tissue (BAT) of the obese mice. During brown adipocyte differentiation, mRNA and protein expression of NOD1 and TLR4, but not TLR2 and NOD2, is also increased. Activation of TLR4, TLR2, or NOD1 in brown adipocytes induces activation of NF-κB and MAPK signaling pathways, leading to inflammatory cytokine/chemokine mRNA expression and/or protein secretion. Moreover, activation of TLR4, TLR2, or NOD1 attenuates both basal and isoproterenol-induced uncoupling protein 1 (UCP-1) expression without affecting mitochondrial biogenesis and lipid accumulation in brown adipocytes. Cellular bioenergetics measurements confirm that attenuation of UCP-1 expression by PRR activation is accompanied by suppression of both basal and isoproterenol-stimulated oxygen consumption rates and isoproterenol-induced uncoupled respiration from proton leak; however, maximal respiration and ATP-coupled respiration are not changed. Further, the attenuation of UCP-1 by PRR activation appears to be mediated through downregulation of the UCP-1 promoter activities. Taken together, our results demonstrate the role of selected PRR activation in inducing inflammation and downregulation of UCP-1 expression and mitochondrial respiration in brown adipocytes. Our results uncover novel targets in BAT for obesity treatment and prevention.


2018 ◽  
Vol 70 (3) ◽  
pp. 567-579
Author(s):  
Gordana Juric-Lekic ◽  
Ljiljana Bedrica ◽  
Dragutin Loncar

Brown adipose tissue (BAT) generates heat due to unique thermogenic UC-mitochondria, an event known as nonshivering thermogenesis. Cold, adrenergic agents, hormones, etc., activate nonshivering thermogenesis, resulting in lipid mobilization, an increase in the mitochondria and mitochondrial cristae, and increased uncoupling protein-1 (UCP1) expression and its incorporation into mitochondrial cristae. BAT precursor cells mature and contribute to BAT growth in a process known as BAT recruitment. For the first time, we herein report the effect of a thermoneutral environment of 33?C on interscapular BAT (IBAT) in rats delivered and raised at 33?C. The control animals were housed at 20?C. Thermoneutral IBAT was atrophic (73 mg vs. 191 mg) but with more adipocyte precursor cells; euthermia (37.6?C) was maintained without nonshivering thermogenesis. Although IBAT was inactive, the thermoneutral animals did not develop obesity, and on the contrary, the thermoneutral environment of 33?C hindered the rats? growth, weight (65 gm vs. 139 gm), volume (67 gm vs.136 gm) and length (12 cm vs. 16 cm). The thermoneutral brown adipocytes were smaller (7234 ?m3 vs. 9198 ?m3) with more lipids (4919 ?m3 vs. 4507 ?m3) and a smaller mitochondrial cristae area (52504 ?m2 vs. 61288 ?m2/adipocyte). Lipoprotein lipase mRNA expression was 11% (vs. 58% in control) and UCP1 mRNA expression was 34% (vs. 93% control). UCP1 immunoelectron microscopic study detected 160 UCP1-gold particles (vs. 700 in control) per UC-mitochondrion; thermoneutral brown adipocytes had 9-fold fewer UCP1-gold particles (0.34x106 vs. 2.99x106 UCP1-gold particles), and thermoneutral UC-mitochondria developed specific intramitochondrial tubular inclusions.


2002 ◽  
Vol 282 (1) ◽  
pp. C105-C112 ◽  
Author(s):  
Bibian García ◽  
Maria-Jesús Obregón

To study the effect of the mitogens epidermal growth factor (EGF), acidic and basic fibroblast growth factors (aFGF and bFGF), and vasopressin on brown adipocyte differentiation, we analyzed the expression of uncoupling protein-1 (UCP-1) mRNA. Quiescent brown preadipocytes express high levels of UCP-1 mRNA in response to triiodothyronine (T3) and norepinephrine (NE). The addition of serum or the mitogenic condition aFGF + vasopressin + NE or EGF + vasopressin + NE decreases UCP-1 mRNA. A second addition of mitogens further decreases UCP-1 mRNA. Treatment with aFGF or bFGF alone increases UCP-1 mRNA, whereas the addition of EGF or vasopressin dramatically reduces UCP-1 mRNA levels. The continuous presence of T3 increases UCP-1 mRNA levels in cells treated with EGF, aFGF, or bFGF. The effect of T3 on the stimulation of DNA synthesis also was tested. T3 inhibits the mitogenic activity of aFGF and bFGF. In conclusion, mitogens like aFGF or bFGF allow brown adipocyte differentiation, whereas EGF and vasopressin inhibit the differentiation process. T3 behaves as an important hormone that regulates both brown adipocyte proliferation and differentiation.


2008 ◽  
Vol 19 (12) ◽  
pp. 840-847 ◽  
Author(s):  
Sachiko Nomura ◽  
Takashi Ichinose ◽  
Manabu Jinde ◽  
Yu Kawashima ◽  
Kaoru Tachiyashiki ◽  
...  

2021 ◽  
Vol 22 (16) ◽  
pp. 8640
Author(s):  
Minh-Hanh Thi Nguyen ◽  
Dat Da Ly ◽  
Nhung Thi Nguyen ◽  
Xu-Feng Qi ◽  
Hyon-Seung Yi ◽  
...  

Thyroid hormones, including 3,5,3′-triiodothyronine (T3), cause a wide spectrum of genomic effects on cellular metabolism and bioenergetic regulation in various tissues. The non-genomic actions of T3 have been reported but are not yet completely understood. Acute T3 treatment significantly enhanced basal, maximal, ATP-linked, and proton-leak oxygen consumption rates (OCRs) of primary differentiated mouse brown adipocytes accompanied with increased protein abundances of uncoupling protein 1 (UCP1) and mitochondrial Ca2+ uniporter (MCU). T3 treatment depolarized the resting mitochondrial membrane potential (Ψm) but augmented oligomycin-induced hyperpolarization in brown adipocytes. Protein kinase B (AKT) and mammalian target of rapamycin (mTOR) were activated by T3, leading to the inhibition of autophagic degradation. Rapamycin, as an mTOR inhibitor, blocked T3-induced autophagic suppression and UCP1 upregulation. T3 increases intracellular Ca2+ concentration ([Ca2+]i) in brown adipocytes. Most of the T3 effects, including mTOR activation, UCP1 upregulation, and OCR increase, were abrogated by intracellular Ca2+ chelation with BAPTA-AM. Calmodulin inhibition with W7 or knockdown of MCU dampened T3-induced mitochondrial activation. Furthermore, edelfosine, a phospholipase C (PLC) inhibitor, prevented T3 from acting on [Ca2+]i, UCP1 abundance, Ψm, and OCR. We suggest that short-term exposure of T3 induces UCP1 upregulation and mitochondrial activation due to PLC-mediated [Ca2+]i elevation in brown adipocytes.


2019 ◽  
Vol 11 (9) ◽  
pp. 781-790 ◽  
Author(s):  
Wen Meng ◽  
Xiuci Liang ◽  
Ting Xiao ◽  
Jing Wang ◽  
Jie Wen ◽  
...  

Abstract Increasing brown and beige fat thermogenesis have an anti-obesity effect and thus great metabolic benefits. However, the molecular mechanisms regulating brown and beige fat thermogenesis remain to be further elucidated. We recently found that fat-specific knockout of Rheb promoted beige fat thermogenesis. In the current study, we show that Rheb has distinct effects on thermogenic gene expression in brown and beige fat. Fat-specific knockout of Rheb decreased protein kinase A (PKA) activity and thermogenic gene expression in brown adipose tissue of high-fat diet-fed mice. On the other hand, overexpression of Rheb activated PKA and increased uncoupling protein 1 expression in brown adipocytes. Mechanistically, Rheb overexpression in brown adipocytes increased Notch expression, leading to disassociation of the regulatory subunit from the catalytic subunit of PKA and subsequent PKA activation. Our study demonstrates that Rheb, by selectively modulating thermogenic gene expression in brown and beige adipose tissues, plays an important role in regulating energy homeostasis.


PPAR Research ◽  
2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
H. Y. Chen ◽  
Q. Liu ◽  
A. M. Salter ◽  
M. A. Lomax

Expression of the brown adipocyte-specific gene, uncoupling protein 1 (UCP1), is increased by both PPARγstimulation and cAMP activation through their ability to stimulate the expression of the PPAR coactivator PGC1α. In HIB1B brown preadipocytes, combination of the PPARγagonist, rosiglitazone, and the cAMP stimulator forskolin synergistically increased UCP1 mRNA expression, but PGC1αexpression was only increased additively by the two drugs. The PPARγantagonist, GW9662, and the PKA inhibitor, H89, both inhibited UCP1 expression stimulated by rosiglitazone and forskolin but PGC1αexpression was not altered to the same extent. Reporter studies demonstrated that combined rosiglitazone and forskolin synergistically activated transcription from a full length 3.1 kbp UCP1 luciferase promoter construct, but the response was only additive and much reduced when a minimal 260 bp proximal UCP1 promoter was examined. Rosiglitazone and forskolin in combination were able to synergistically stimulate promoters comprising of tandem repeats of either PPREs or CREs. We conclude that rosiglitazone and forskolin act together to synergistically activate the UCP1 promoter directly rather than by increasing PGC1αexpression and by a mechanism involving cross-talk between the signalling systems regulating the CRE and PPRE on the promoters.


Sign in / Sign up

Export Citation Format

Share Document