scholarly journals Soy Protein Supplementation May Play a Role in Decreasing the Risk of Bone Fracture through Affecting Hematopoietic Factors in Young and Old Men

2013 ◽  
Vol 27 (S1) ◽  
Author(s):  
Neda S Akhavan ◽  
Shirin Pourafshar ◽  
Negin Navaei ◽  
Bahram H. Arjmandi
2002 ◽  
Vol 132 (9) ◽  
pp. 2605-2608 ◽  
Author(s):  
Dania A. Khalil ◽  
Edralin A. Lucas ◽  
Shanil Juma ◽  
Brenda J. Smith ◽  
Mark E. Payton ◽  
...  

2021 ◽  
pp. 1-27
Author(s):  
Masoome Piri Damaghi ◽  
Atieh Mirzababaei ◽  
Sajjad Moradi ◽  
Elnaz Daneshzad ◽  
Atefeh Tavakoli ◽  
...  

Abstract Background: Essential amino acids (EAAs) promote the process of regulating muscle synthesis. Thus, whey protein that contains higher amounts of EAA can have a considerable effect on modifying muscle synthesis. However, there is insufficient evidence regarding the effect of soy and whey protein supplementation on body composition. Thus, we sought to perform a meta-analysis of published Randomized Clinical Trials that examined the effect of whey protein supplementation and soy protein supplementation on body composition (lean body mass, fat mass, body mass and body fat percentage) in adults. Methods: We searched PubMed, Scopus, and Google Scholar, up to August 2020, for all relevant published articles assessing soy protein supplementation and whey protein supplementation on body composition parameters. We included all Randomized Clinical Trials that investigated the effect of whey protein supplementation and soy protein supplementation on body composition in adults. Pooled means and standard deviations (SD) were calculated using random-effects models. Subgroup analysis was applied to discern possible sources of heterogeneity. Results: After excluding non-relevant articles, 10 studies, with 596 participants, remained in this study. We found a significant increase in lean body mass after whey protein supplementation weighted mean difference (WMD: 0.91; 95% CI: 0.15, 1.67. P= 0.019). Subgroup analysis, for whey protein, indicated that there was a significant increase in lean body mass in individuals concomitant to exercise (WMD: 1.24; 95% CI: 0.47, 2.00; P= 0.001). There was a significant increase in lean body mass in individuals who received 12 or less weeks of whey protein (WMD: 1.91; 95% CI: 1.18, 2.63; P<0.0001). We observed no significant change between whey protein supplementation and body mass, fat mass, and body fat percentage. We found no significant change between soy protein supplementation and lean body mass, body mass, fat mass, and body fat percentage. Subgroup analysis for soy protein indicated there was a significant increase in lean body mass in individuals who supplemented for 12 or less weeks with soy protein (WMD: 1.48; 95% CI: 1.07, 1.89; P< 0.0001). Conclusion: Whey protein supplementation significantly improved body composition via increases in lean body mass, without influencing fat mass, body mass, and body fat percentage.


2019 ◽  
Vol 21 (4) ◽  
pp. 397
Author(s):  
Suelen Maiara Medeiros da Silva ◽  
Bárbara Cristovão Carminati ◽  
Valfredo De Almeida Santos Junior ◽  
Pablo Christiano Barboza Lollo

AbstractThe interest of the supplementation market for the soy protein consumption  to optimize physical and metabolic performance after exercise is increasing. However, evidence suggests that the  soy protein ingestion has lower anabolic properties when compared with whey protein. The purpose of this systematic review was to compare the effects of whey protein and soy protein supplementation on the  muscle functions maintenance after exercise. This review was performed using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). Articles were searched for in the Pubmed database and included studies comparing the effects of soy protein and whey protein consumption on protein synthesis, lean mass gain and oxidative stress reduction in response to endurance or resistance training. Thirteen trials were included in this review. The results showed that the whey protein consumption is superior to that of soy protein with respect to protein synthesis and lean mass gain, but soy protein showed superior results in reducing oxidative stress. Future research comparing both soy and whey protein are needed to define protein source to be used in nutritional interventions to protein synthesis, lean mass gain and oxidative stress in different populations. Keywords: Soybean Proteins. Milk Proteins. Protein Biosynthesis. Hypertrophy. ResumoO interesse do mercado de suplementação pelo consumo de proteína de soja para otimizar o desempenho físico e metabólico após o exercício está aumentando. No entanto, evidências sugerem que a ingestão da proteína de soja tem propriedades anabólicas mais baixas quando comparada à proteína do soro do leite. O objetivo desta revisão sistemática foi comparar os efeitos da suplementação com whey protein e proteína de soja na manutenção das funções musculares após o exercício. Esta revisão foi realizada usando os Itens de Relatório Preferidos para Revisões Sistemáticas e Meta-Análises (PRISMA). Os artigos foram pesquisados na base de dados Pubmed e incluíram estudos comparando os efeitos da proteína de soja e do consumo de proteínas do soro na síntese protéica, ganho de massa magra e redução do estresse oxidativo em resposta ao treinamento de resistência ou resistência. Treze ensaios foram incluídos nesta revisão. Os resultados mostraram que o consumo de proteína de soro é superior ao da proteína de soja em relação à síntese protéica e ao ganho de massa magra, mas a proteína de soja apresentou resultados superiores na redução do estresse oxidativo. Pesquisas futuras comparando a soja e a proteína do soro do leite são necessárias para definir a fonte protéica a ser usada em intervenções nutricionais para a síntese protéica, ganho de massa magra e estresse oxidativo em diferentes populações. Palavras-chave: Proteínas de Soja. Proteínas do Leite. Biossíntese de Proteínas. Hipertrofia.


2009 ◽  
Vol 8 (7) ◽  
pp. 1009-1017 ◽  
Author(s):  
Gita Radhakrish ◽  
Rashmi . ◽  
Neera Agarwal ◽  
Neelam B. Vaid

2006 ◽  
Vol 16 (3) ◽  
pp. 233-244 ◽  
Author(s):  
Darren G. Candow ◽  
Natalie C. Burke ◽  
T. Smith-Palmer ◽  
Darren G. Burke

The purpose was to compare changes in lean tissue mass, strength, and myof-brillar protein catabolism resulting from combining whey protein or soy protein with resistance training. Twenty-seven untrained healthy subjects (18 female, 9 male) age 18 to 35 y were randomly assigned (double blind) to supplement with whey protein (W; 1.2 g/kg body mass whey protein + 0.3 g/kg body mass sucrose power, N = 9: 6 female, 3 male), soy protein (S; 1.2 g/kg body mass soy protein + 0.3 g/kg body mass sucrose powder, N = 9: 6 female, 3 male) or placebo (P; 1.2 g/kg body mass maltodextrine + 0.3 g/kg body mass sucrose powder, N = 9: 6 female, 3 male) for 6 wk. Before and after training, measurements were taken for lean tissue mass (dual energy X-ray absorptiometry), strength (1-RM for bench press and hack squat), and an indicator of myofbrillar protein catabolism (urinary 3-methylhistidine). Results showed that protein supplementation during resistance training, independent of source, increased lean tissue mass and strength over isocaloric placebo and resistance training (P < 0.05). We conclude that young adults who supplement with protein during a structured resistance training program experience minimal beneficial effects in lean tissue mass and strength.


Author(s):  
Savvas Kritikos ◽  
Konstantinos Papanikolaou ◽  
Dimitrios Draganidis ◽  
Athanasios Poulios ◽  
Kalliopi Georgakouli ◽  
...  

Abstract Background Soccer-specific speed-endurance training induces short-term neuromuscular fatigue and performance deterioration over a 72-h recovery period, associated with elevated markers of exercise-induced muscle damage. We compared the effects of whey vs. soy protein supplementation on field activity, performance, muscle damage and redox responses following speed-endurance training in soccer players. Methods Ten well-trained, male soccer players completed three speed-endurance training trials, receiving whey protein (WP), soy protein (SP) or an isoenergetic placebo (PL; maltodextrin) according to a randomized, double-blind, crossover, repeated-measures design. A pre-loading period was applied in each trial during which protein supplementation was individually adjusted to reach a total protein intake of 1.5 g/kg/day, whereas in PL protein intake was adjusted at 0.8–1 g/kg/day. Following pre-loading, two speed-endurance training sessions (1 and 2) were performed 1 day apart, over a 3-day experimental period. During each session, field activity and heart rate were continuously monitored using global positioning system and heart rate monitors, respectively. Performance (isokinetic strength of knee extensors and flexors, maximal voluntary isometric contraction, speed, repeated sprint ability, countermovement jump), muscle damage (delayed-onset of muscle soreness, creatine kinase activity) and redox status (glutathione, total antioxidant capacity, protein carbonyls) were evaluated at baseline (pre), following pre-loading (post-load), and during recovery from speed-endurance training. Results High-intensity and high-speed running decreased (P ≤ 0.05) during speed-endurance training in all trials, but WP and SP mitigated this response. Isokinetic strength, maximal voluntary isometric contraction, 30-m speed, repeated sprint ability and countermovement jump performance were similarly deteriorated during recovery following speed-endurance training in all trials (P ≤ 0.05). 10 m speed was impaired at 24 h only in PL. Delayed-onset of muscle soreness, creatine kinase, total antioxidant capacity and protein carbonyls increased and glutathione decreased equally among trials following speed-endurance training (P ≤ 0.05), with SP inducing a faster recovery of protein carbonyls only at 48 h (P ≤ 0.05) compared to WP and PL. Conclusions In conclusion, increasing daily protein intake to 1.5 g/kg through ingestion of either whey or soy protein supplements mitigates field performance deterioration during successive speed-endurance training sessions without affecting exercise-induced muscle damage and redox status markers. Trial registration Name of the registry: clinicaltrials.gov. Trial registration: NCT03753321. Date of registration: 12/10/2018.


Sign in / Sign up

Export Citation Format

Share Document