Soy protein supplementation during moderate intensity exercise failed to improve the subsequent 15min time trial power output in hot environment

2010 ◽  
Vol 12 ◽  
pp. e103
Author(s):  
A. Ghosh ◽  
R. Bin ◽  
Che Jusoh
2010 ◽  
Vol 20 (3) ◽  
pp. 216-223 ◽  
Author(s):  
Asok Kumar Ghosh ◽  
A. Abdul Rahaman ◽  
Rabindarjeet Singh

The purpose of the study was to investigate whether a combination of sago and soy protein ingested during moderate-intensity cycling exercise can improve subsequent high-intensity endurance capacity compared with a carbohydrate in the form of sago and with a placebo. The participants were 8 male recreational cyclists with age, weight, and VO2max of 21.5 ± 1.1 yr, 63.3 ± 2.4 kg, and 39.9 ± 1.1 ml · kg−1 · min−1, respectively. The design of the study was a randomized, double-blind placebo-controlled crossover comprising 60 min of exercise on a cycle ergometer at 60% VO2max followed by a time-to-exhaustion ride at 90% VO2max. The sago feeding provided 60 g of carbohydrate, and the sago-soy combination provided 52.5 g of carbohydrate and 15 g of protein, both at 20-min intervals during exercise. Times to exhaustion for the placebo, sago, and sago-soy supplementations were 4.09 ± 1.28, 5.49 ± 1.20, and 7.53 ± 2.02 min, respectively. Sago-soy supplementation increased endurance by 84% (44–140%; p < .001) and by 37% (15–63%; p < .05) relative to placebo and sago, respectively. The plasma insulin response was elevated above that with placebo during sago and sago-soy supplementations. The authors conclude that a combination of sago and soy protein can delay fatigue during high-intensity cycling.


2008 ◽  
Vol 64 (3) ◽  
pp. 197-204 ◽  
Author(s):  
J. Romeo ◽  
D. Jiménez-Pavón ◽  
M. Cervantes-Borunda ◽  
J. Wärnberg ◽  
S. Gómez-Martínez ◽  
...  

2018 ◽  
Vol 13 (1) ◽  
pp. 50-56 ◽  
Author(s):  
Joseph A. McQuillan ◽  
Julia R. Casadio ◽  
Deborah K. Dulson ◽  
Paul B. Laursen ◽  
Andrew E. Kilding

Purpose: To determine the effect of consumption on measures of perception, thermoregulation, and cycling performance in hot conditions. Methods: In a randomized, double-blind, crossover design, 8 well-trained cyclists (mean ± SD age 25 ± 8 y, peak 64 ± 5 mL · kg−1 · min−1) performed 2 separate trials in hot (35°C, 60% relative humidity) environments, having ingested either 140 mL -rich beetroot juice ∼8 mmol (NIT) or placebo (PLA) daily for 3 d with a 7-d washout period separating trials. Trials consisted of 2 × 10-min bouts at 40% and 60% peak power output (PPO) to determine physiological and perceptual responses to the heat, followed by a 4-km cycling time trial. Results: Basal [nitrite] was substantially elevated in NIT (2.70 ± 0.98 µM) vs PLA (1.10 ± 0.61 µM), resulting in a most likely (ES = 1.58 ± 0.93) increase after 3 d. There was a very likely trivial increase in rectal temperature in NIT at 40% (PLA 37.4°C ± 0.2°C vs NIT 37.5°C ± 0.3°C, 0.1°C ± 0.2°C) and 60% (PLA 37.8°C ± 0.2°C vs NIT 37.9°C ± 0.3°C, 0.1°C ± 0.2°C) PPO. Cycling performance was similar between trials (PLA 336 ± 45 W vs NIT 337 ± 50 W, CV ± 95%CL; 0.2% ± 2.5%). Outcomes for heart rate and perceptual measures were unclear across the majority of time points. Conclusions: Three days of supplementation resulted in small increases in rectal temperature during low- to moderate-intensity exercise, but this did not appear to influence 4-km cycling time-trial performance in hot climates.


2014 ◽  
Vol 307 (7) ◽  
pp. E539-E552 ◽  
Author(s):  
Jonathan M. Peake ◽  
Sok Joo Tan ◽  
James F. Markworth ◽  
James A. Broadbent ◽  
Tina L. Skinner ◽  
...  

This study investigated the effects of high-intensity interval training (HIIT) vs. work-matched moderate-intensity continuous exercise (MOD) on metabolism and counterregulatory stress hormones. In a randomized and counterbalanced order, 10 well-trained male cyclists and triathletes completed a HIIT session [81.6 ± 3.7% maximum oxygen consumption (V̇o2 max); 72.0 ± 3.2% peak power output; 792 ± 95 kJ] and a MOD session (66.7 ± 3.5% V̇o2 max; 48.5 ± 3.1% peak power output; 797 ± 95 kJ). Blood samples were collected before, immediately after, and 1 and 2 h postexercise. Carbohydrate oxidation was higher ( P = 0.037; 20%), whereas fat oxidation was lower ( P = 0.037; −47%) during HIIT vs. MOD. Immediately after exercise, plasma glucose ( P = 0.024; 20%) and lactate ( P < 0.01; 5.4×) were higher in HIIT vs. MOD, whereas total serum free fatty acid concentration was not significantly different ( P = 0.33). Targeted gas chromatography-mass spectromtery metabolomics analysis identified and quantified 49 metabolites in plasma, among which 11 changed after both HIIT and MOD, 13 changed only after HIIT, and 5 changed only after MOD. Notable changes included substantial increases in tricarboxylic acid intermediates and monounsaturated fatty acids after HIIT and marked decreases in amino acids during recovery from both trials. Plasma adrenocorticotrophic hormone ( P = 0.019), cortisol ( P < 0.01), and growth hormone ( P < 0.01) were all higher immediately after HIIT. Plasma norepinephrine ( P = 0.11) and interleukin-6 ( P = 0.20) immediately after exercise were not significantly different between trials. Plasma insulin decreased during recovery from both HIIT and MOD ( P < 0.01). These data indicate distinct differences in specific metabolites and counterregulatory hormones following HIIT vs. MOD and highlight the value of targeted metabolomic analysis to provide more detailed insights into the metabolic demands of exercise.


2021 ◽  
Vol 18 (21) ◽  
pp. 394
Author(s):  
Parimon Kaewpaluk ◽  
Onanong Kulaputana ◽  
Sompol Sanguanrungsirikul

Exercise training is recommended to promote energy expenditure. Fat utilization occurs during exercise and continues for an extended period of time after the exercise session. The environmental temperatures can influence whole body substrate oxidation. The present study aimed to address the impacts of environmental temperature on fat oxidation during post-exercise recovery in exercise-trained obese women. Eleven sedentary obese women (age: 18 - 50 y, BMI: 27.5 - 40 kg/m2) with regular menstruation participated in the study. All subjects underwent a 4-week moderate-intensity aerobic exercise program. After training, each subject completed 2 occasions of post-exercise recovery testing in hot (31 - 32 °C) and thermo-neutral (22 - 23 °C) conditions in a randomized crossover fashion with 3 - 4 days of washout period. Two exercise bouts preceding each recovery condition were identically performed for 60 min at 60 % of heart rate reserve (HRreserve) in the thermo-neutral condition. Both experiments were conducted during the follicular phase of menstrual cycle. Substrate oxidations were determined during 1 h of post-exercise recovery using indirect calorimetry. The results showed that the fat oxidation during recovery in thermo-neutral environment (52.8 ± 26.5 mg.kg-1.h-1) was significantly greater than recovery in hot environment (32.3 ± 27.9 mg.kg-1.h-1, p = 0.0002). Total energy from substrate oxidation was not different between hot and thermo-neutral environments. Thus, in obese women with 4-week exercise training, recovery in the thermo-neutral condition has a higher fat oxidation than in the hot condition. This result may be implicated in weight management for temperature of choice to recover after routine exercise training sessions. HIGHLIGHTS Fat oxidation was greater during recovery in thermo-neutral environment after moderate-intensity exercise in trained obese women Recovery carbohydrate oxidation was greater in hot environment than in thermo-neutral environment after moderate-intensity exercise Energy expenditure from substrate oxidations during recovery in both thermo-neutral and hot environments were similar GRAPHICAL ABSTRACT


2017 ◽  
Vol 88 (7) ◽  
pp. 744-753 ◽  
Author(s):  
Piero Fontana ◽  
Fabio Saiani ◽  
Marc Grütter ◽  
Jean-Philippe Croset ◽  
André Capt ◽  
...  

It is currently unclear how the assembly of different fabric layers of personal protective clothing (PPC) contributes to differences in thermal comfort among garments. Therefore, we used two different approaches to investigate the effect of PPC on body heat dissipation: a technical characterization of textiles (using sweating Torso methodology) and thermo-physiological wearing trials. We hypothesized that the technical characterization provides a similar outcome compared to the wearing trials and, thus, proves to have high thermo-physiological relevance. Thirteen different PPC were investigated using the sweating Torso methodology. Three out of these thirteen were then selected for inclusion in a series of human subject trials in a hot environment. Results from human trials and Torso testing were related to each other. The thermal and evaporative properties of the selected PPC typically differed and effects were observed for the thermo-physiological responses of human study participants. Differences in Torso surface temperature of up to 9℃ and moisture accumulation in the protective clothing systems of up to 184 g·m–2 were detected using the sweating Torso methodology. Moderate intensity exercise with the human study participants induced textile-dependent differences of up to 0.9 ± 0.2℃ ( P < 0.001) and 1.2 ± 0.2℃ ( P = 0.008) for excessive core body and excessive skin temperature, respectively. Using the sweating Torso methodology, physiologically relevant differences in textile performance could be detected among different PPC. Consequently, sweating Torso is a relevant tool to gain insight into human thermo-physiological responses to different PPC with similar end-use based on their dry and wet heat transfer characteristics.


2021 ◽  
pp. 1-27
Author(s):  
Masoome Piri Damaghi ◽  
Atieh Mirzababaei ◽  
Sajjad Moradi ◽  
Elnaz Daneshzad ◽  
Atefeh Tavakoli ◽  
...  

Abstract Background: Essential amino acids (EAAs) promote the process of regulating muscle synthesis. Thus, whey protein that contains higher amounts of EAA can have a considerable effect on modifying muscle synthesis. However, there is insufficient evidence regarding the effect of soy and whey protein supplementation on body composition. Thus, we sought to perform a meta-analysis of published Randomized Clinical Trials that examined the effect of whey protein supplementation and soy protein supplementation on body composition (lean body mass, fat mass, body mass and body fat percentage) in adults. Methods: We searched PubMed, Scopus, and Google Scholar, up to August 2020, for all relevant published articles assessing soy protein supplementation and whey protein supplementation on body composition parameters. We included all Randomized Clinical Trials that investigated the effect of whey protein supplementation and soy protein supplementation on body composition in adults. Pooled means and standard deviations (SD) were calculated using random-effects models. Subgroup analysis was applied to discern possible sources of heterogeneity. Results: After excluding non-relevant articles, 10 studies, with 596 participants, remained in this study. We found a significant increase in lean body mass after whey protein supplementation weighted mean difference (WMD: 0.91; 95% CI: 0.15, 1.67. P= 0.019). Subgroup analysis, for whey protein, indicated that there was a significant increase in lean body mass in individuals concomitant to exercise (WMD: 1.24; 95% CI: 0.47, 2.00; P= 0.001). There was a significant increase in lean body mass in individuals who received 12 or less weeks of whey protein (WMD: 1.91; 95% CI: 1.18, 2.63; P<0.0001). We observed no significant change between whey protein supplementation and body mass, fat mass, and body fat percentage. We found no significant change between soy protein supplementation and lean body mass, body mass, fat mass, and body fat percentage. Subgroup analysis for soy protein indicated there was a significant increase in lean body mass in individuals who supplemented for 12 or less weeks with soy protein (WMD: 1.48; 95% CI: 1.07, 1.89; P< 0.0001). Conclusion: Whey protein supplementation significantly improved body composition via increases in lean body mass, without influencing fat mass, body mass, and body fat percentage.


Author(s):  
Bradley S. Lander ◽  
Dermot M. Phelan ◽  
Matthew W. Martinez ◽  
Elizabeth H. Dineen

Abstract Purpose of review This review will summarize the distinction between hypertrophic cardiomyopathy (HCM) and exercise-induced cardiac remodeling (EICR), describe treatments of particular relevance to athletes with HCM, and highlight the evolution of recommendations for exercise and competitive sport participation relevant to individuals with HCM. Recent findings Whereas prior guidelines have excluded individuals with HCM from more than mild-intensity exercise, recent data show that moderate-intensity exercise improves functional capacity and indices of cardiac function and continuation of competitive sports may not be associated with worse outcomes. Moreover, recent studies of athletes with implantable cardioverter defibrillators (ICDs) demonstrated a safer profile than previously understood. In this context, the updated American Heart Association/American College of Cardiology (AHA/ACC) and European Society of Cardiology (ESC) HCM guidelines have increased focus on shared decision-making and liberalized restrictions on exercise and sport participation among individuals with HCM. Summary New data demonstrating the safety of exercise in individuals with HCM and in athletes with ICDs, in addition to a focus on shared decision-making, have led to the most updated guidelines easing restrictions on exercise and competitive athletics in this population. Further athlete-specific studies of HCM, especially in the context of emerging therapies such as mavacamten, are important to inform accurate risk stratification and eligibility recommendations.


Aging Cell ◽  
2021 ◽  
Vol 20 (2) ◽  
Author(s):  
Carolyn Chee ◽  
Chris E. Shannon ◽  
Aisling Burns ◽  
Anna L. Selby ◽  
Daniel Wilkinson ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document