scholarly journals Molecular regulation of adiposity in a migrant, the gray catbird (1100.1)

2014 ◽  
Vol 28 (S1) ◽  
Author(s):  
Keely Corder ◽  
David Russell ◽  
Janice Huss ◽  
Paul Schaeffer
2014 ◽  
Author(s):  
Patrick Seale ◽  
Wenshan Wang ◽  
Sona Rajakumari ◽  
Matthew Harms

PEDIATRICS ◽  
2016 ◽  
Vol 137 (Supplement 3) ◽  
pp. 507A-507A
Author(s):  
Sudeepta K Basu ◽  
Renjithkumar Kalikkot Thekkeveedu ◽  
Chun Chu ◽  
Paramhamsa Maturu ◽  
Weiwu Jiang ◽  
...  

Diabetes ◽  
1991 ◽  
Vol 40 (11) ◽  
pp. 1525-1530 ◽  
Author(s):  
L. S. Phillips ◽  
S. Goldstein ◽  
C. I. Pao

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yuni Kay ◽  
Bruce E. Herring

AbstractWhile efficient methods are well established for studying postsynaptic protein regulation of glutamatergic synapses in the mammalian central nervous system, similarly efficient methods are lacking for studying proteins regulating presynaptic function. In the present study, we introduce an optical/electrophysiological method for investigating presynaptic molecular regulation. Here, using an optogenetic approach, we selectively stimulate genetically modified presynaptic CA3 pyramidal neurons in the hippocampus and measure optically-induced excitatory postsynaptic currents produced in unmodified postsynaptic CA1 pyramidal neurons. While such use of optogenetics is not novel, previous implementation methods do not allow basic quantification of the changes in synaptic strength produced by genetic manipulations. We find that incorporating simultaneous recordings of fiber volley amplitude provides a control for optical stimulation intensity and, as a result, creates a metric of synaptic efficacy that can be compared across experimental conditions. In the present study, we utilize our new method to demonstrate that inhibition of synaptotagmin 1 expression in CA3 pyramidal neurons leads to a significant reduction in Schaffer collateral synapse function, an effect that is masked with conventional electrical stimulation. Our hope is that this method will expedite our understanding of molecular regulatory pathways that govern presynaptic function.


2021 ◽  
Vol 22 (11) ◽  
pp. 5804
Author(s):  
Kamila Buzun ◽  
Agnieszka Gornowicz ◽  
Roman Lesyk ◽  
Krzysztof Bielawski ◽  
Anna Bielawska

Autophagy is a process of self-degradation that plays an important role in removing damaged proteins, organelles or cellular fragments from the cell. Under stressful conditions such as hypoxia, nutrient deficiency or chemotherapy, this process can also become the strategy for cell survival. Autophagy can be nonselective or selective in removing specific organelles, ribosomes, and protein aggregates, although the complete mechanisms that regulate aspects of selective autophagy are not fully understood. This review summarizes the most recent research into understanding the different types and mechanisms of autophagy. The relationship between apoptosis and autophagy on the level of molecular regulation of the expression of selected proteins such as p53, Bcl-2/Beclin 1, p62, Atg proteins, and caspases was discussed. Intensive studies have revealed a whole range of novel compounds with an anticancer activity that inhibit or activate regulatory pathways involved in autophagy. We focused on the presentation of compounds strongly affecting the autophagy process, with particular emphasis on those that are undergoing clinical and preclinical cancer research. Moreover, the target points, adverse effects and therapeutic schemes of autophagy inhibitors and activators are presented.


2021 ◽  
Vol 22 (3) ◽  
pp. 1057
Author(s):  
Magdalena Wójcik-Jagła ◽  
Agata Daszkowska-Golec ◽  
Anna Fiust ◽  
Przemysław Kopeć ◽  
Marcin Rapacz

Mechanisms involved in the de-acclimation of herbaceous plants caused by warm periods during winter are poorly understood. This study identifies the genes associated with this mechanism in winter barley. Seedlings of eight accessions (four tolerant and four susceptible to de-acclimation cultivars and advanced breeding lines) were cold acclimated for three weeks and de-acclimated at 12 °C/5 °C (day/night) for one week. We performed differential expression analysis using RNA sequencing. In addition, reverse-transcription quantitative real-time PCR and enzyme activity analyses were used to investigate changes in the expression of selected genes. The number of transcripts with accumulation level changed in opposite directions during acclimation and de-acclimation was much lower than the number of transcripts with level changed exclusively during one of these processes. The de-acclimation-susceptible accessions showed changes in the expression of a higher number of functionally diverse genes during de-acclimation. Transcripts associated with stress response, especially oxidoreductases, were the most abundant in this group. The results provide novel evidence for the distinct molecular regulation of cold acclimation and de-acclimation. Upregulation of genes controlling developmental changes, typical for spring de-acclimation, was not observed during mid-winter de-acclimation. Mid-winter de-acclimation seems to be perceived as an opportunity to regenerate after stress. Unfortunately, it is competitive to remain in the cold-acclimated state. This study shows that the response to mid-winter de-acclimation is far more expansive in de-acclimation-susceptible cultivars, suggesting that a reduced response to the rising temperature is crucial for de-acclimation tolerance.


Author(s):  
Hui-Ling Gong ◽  
Leonce Dusengemungu ◽  
Clement Igiraneza ◽  
Placide Rukundo

Sign in / Sign up

Export Citation Format

Share Document