ACADEMIC CONSEQUENCES OF A TRAUMA SYSTEM FAILURE

1989 ◽  
Vol 29 (7) ◽  
pp. 1028
Author(s):  
R. P. Fischer ◽  
P. E. Pepe ◽  
D. H. Parks ◽  
F. D. Prentice ◽  
K. L. Mattox
1990 ◽  
Vol 30 (7) ◽  
pp. 784-791 ◽  
Author(s):  
RONALD P. FISCHER ◽  
PAUL E. PEPE ◽  
R. LAWRENCE REED ◽  
DONALD H. PARKS ◽  
F. DAVID PRENTICE ◽  
...  

Author(s):  
A.Yu. Kulakov

Goal. Assess the reliability of a complex technical system with periodic reconfiguration and compare the results obtained a similar system, but without reconfiguration. Materials and methods. In this article uses the method of statistical modeling (Monte Carlo) to assess the reliability of complex system. We using the normal and exponential distribution of failure time for modeling failures of system elements. Reconfiguration algorithm is the algorithm proposed for the attitude and orbit control system of spacecraft. Results. A computer program has been developed for assessing reliability on the basis of a statistical modeling method, which makes it possible to evaluate systems of varying complexity with exponential and normal distribution, as well as with and without periodic reconfiguration. A quantitative estimate of the reliability as a function of the probability of system failure is obtained. Conclusion. It has been demonstrated that a system with reconfiguration has the best reliability characteristics, both in the case of exponential and normal distribution of failures.


2013 ◽  
Author(s):  
Russ S. Kotwal ◽  
Frank K. Butler ◽  
Erin P. Edgar ◽  
Stacy A. Shackelford ◽  
Donald R. Bennett ◽  
...  

1992 ◽  
Vol 26 (5-6) ◽  
pp. 1411-1420 ◽  
Author(s):  
S. H. Choudhury ◽  
S. L. Yu ◽  
Y. Y. Haimes

This paper presents an integrated methodology that allows determining the probability of noncompliance for a given wastewater treatment plant. The methodology applies fault-tree analysis, which uses failure probabilities of individual components, to predict the overall system failure probability. The methodology can be divided into two parts : risk identification and risk quantification. In risk identification, the key components in the system are determined by analyzing the contribution of individual component failures toward system failure (i.e., noncompliance). In risk quantification, a fault-tree model is constructed for the particular system, component failure probabilities are estimated, and the fault-tree model is evaluated to determine the probability of occurrence of the top event (i.e., noncompliance). A list can be developed that ranks critical events on the basis of their contributions to the probability of noncompliance. Such a ranking should assist managers to determine which components require most attention for a better performance of the entire system. A wastewater treatment plant for treating metal-bearing rinse water from an electroplating industry is used as an example to demonstrate the application of this methodology.


Author(s):  
Divesh Garg ◽  
Reena Garg ◽  
Vanita Garg

Background: A briquette machine can be considered very useful in modern times as the need of energy consumption is increasing rapidly. Considering the harm to environment, study of briquette machine is the need of present times. In this paper, the operative unit is considered as briquette machine also known as bio-coal which is used for agroforestry waste. Objective: A single operative unit has been analyzed stochastically. The inspection of breakdown of a unit reveals the feasibility of the unit under the supervision of either ordinary or expert repairmen. Two types of fault are revealed by the repairmen either minor or major fault. Minor faults are repaired immediately by the same repairmen but whenever major fault held, the machine’s fault will be handled by expert person. Method: It is assumed that the repair needs no modification once served. Availability, Mean-time for system failure, and profits are analyzed by utilizing the Regenerative point graphical technique and semi-Markov process. Result: Study reveals that the Mean-time for system failure of the system model go on decreasing as failure rate increase and availability goes on decreasing as failure-rate increase. Moreover, the study shows that the systems profit goes down on increase of Failure-rate. Conclusion: Findings of the study supports the hypothesis that the limits of failure/repair/inspection rate will surely have effective profitability. Moreover, it is found that the utility of scale of operation can easily be derived. The practical importance of biomass briquettes for burning coal or wood is very well appreciated.


2019 ◽  
Vol 46 (2) ◽  
pp. 329-335 ◽  
Author(s):  
Falco Hietbrink ◽  
Roderick M. Houwert ◽  
Karlijn J. P. van Wessem ◽  
Rogier K. J. Simmermacher ◽  
Geertje A. M. Govaert ◽  
...  

Abstract Introduction In 1999 an inclusive trauma system was initiated in the Netherlands and a nationwide trauma registry, including all admitted trauma patients to every hospital, was started. The Dutch trauma system is run by trauma surgeons who treat both the truncal (visceral) and extremity injuries (fractures). Materials and Methods In this comprehensive review based on previous published studies, data over the past 20 years from the central region of the Netherlands (Utrecht) was evaluated. Results It is demonstrated that the initiation of the trauma systems and the governance by the trauma surgeons led to a region-wide mortality reduction of 50% and a mortality reduction for the most severely injured of 75% in the level 1 trauma centre. Furthermore, major improvements were found in terms of efficiency, demonstrating the quality of the current system and its constructs such as the type of surgeon. Due to the major reduction in mortality over the past few years, the emphasis of trauma care evaluation shifts towards functional outcome of severely injured patients. For the upcoming years, centralisation of severely injured patients should also aim at the balance between skills in primary resuscitation and surgical stabilization versus longitudinal surgical involvement. Conclusion Further centralisation to a limited number of level 1 trauma centres in the Netherlands is necessary to consolidate experience and knowledge for the trauma surgeon. The future trauma surgeon, as specialist for injured patients, should be able to provide the vast majority of trauma care in this system. For the remaining part, intramural, regional and national collaboration is essential


2021 ◽  
Vol 45 (5) ◽  
pp. 1340-1348
Author(s):  
Maryam Meshkinfamfard ◽  
Jon Kristian Narvestad ◽  
Johannes Wiik Larsen ◽  
Arezo Kanani ◽  
Jørgen Vennesland ◽  
...  

Abstract Background Resuscitative emergency thoracotomy is a potential life-saving procedure but is rarely performed outside of busy trauma centers. Yet the intervention cannot be deferred nor centralized for critically injured patients presenting in extremis. Low-volume experience may be mitigated by structured training. The aim of this study was to describe concurrent development of training and simulation in a trauma system and associated effect on one time-critical emergency procedure on patient outcome. Methods An observational cohort study split into 3 arbitrary time-phases of trauma system development referred to as ‘early’, ‘developing’ and ‘mature’ time-periods. Core characteristics of the system is described for each phase and concurrent outcomes for all consecutive emergency thoracotomies described with focus on patient characteristics and outcome analyzed for trends in time. Results Over the study period, a total of 36 emergency thoracotomies were performed, of which 5 survived (13.9%). The “early” phase had no survivors (0/10), with 2 of 13 (15%) and 3 of 13 (23%) surviving in the development and mature phase, respectively. A decline in ‘elderly’ (>55 years) patients who had emergency thoracotomy occurred with each time period (from 50%, 31% to 7.7%, respectively). The gender distribution and the injury severity scores on admission remained unchanged, while the rate of patients with signs on life (SOL) increased over time. Conclusion The improvement over time in survival for one time-critical emergency procedure may be attributed to structured implementation of team and procedure training. The findings may be transferred to other low-volume regions for improved trauma care.


Sign in / Sign up

Export Citation Format

Share Document