scholarly journals THE EFFECTS OF MODERATE INTENSITY EXERCISE ON ENERGY INTAKE

1999 ◽  
Vol 31 (Supplement) ◽  
pp. S69
Author(s):  
J. J. Ferris ◽  
D. J. Jacobsen ◽  
J. E. Donnelly
2015 ◽  
Vol 27 (2) ◽  
pp. 192-202 ◽  
Author(s):  
Alice Emily Thackray ◽  
Laura Ann Barrett ◽  
Keith Tolfrey

Eleven healthy girls (mean ± SD: age 12.1 ± 0.6 years) completed three 2-day conditions in a counterbalanced, crossover design. On day 1, participants either walked at 60 (2)% peak oxygen uptake (energy deficit 1.55[0.20] MJ), restricted food energy intake (energy deficit 1.51[0.25] MJ) or rested. On day 2, capillary blood samples were taken at predetermined intervals throughout the 6.5 hr postprandial period before, and following, the ingestion of standardized breakfast and lunch meals. Fasting plasma triacylglycerol concentrations (TAG) was 29% and 13% lower than rest control in moderate-intensity exercise (effect size [ES] = 1.39, p = .01) and energy-intake restriction (ES = 0.57, p = .02) respectively; moderate-intensity exercise was 19% lower than energy-intake restriction (ES = 0.82, p = .06). The moderate-intensity exercise total area under the TAG versus time curve was 21% and 13% lower than rest control (ES = 0.71, p = .004) and energy-intake restriction (ES = 0.39, p = .06) respectively; energy-intake restriction was marginally lower than rest control (-10%; ES = 0.32, p = .12). An exercise-induced energy deficit elicited a greater reduction in fasting plasma TAG with a trend for a larger attenuation in postprandial plasma TAG than an isoenergetic diet-induced energy deficit in healthy girls.


2009 ◽  
Vol 203 (3) ◽  
pp. 357-364 ◽  
Author(s):  
Shin-ya Ueda ◽  
Takahiro Yoshikawa ◽  
Yoshihiro Katsura ◽  
Tatsuya Usui ◽  
Shigeo Fujimoto

There is growing interest in the effects of exercise on plasma gut hormone levels and subsequent energy intake (EI) but the effects of mode and exercise intensity on anorectic hormone profiles on subsequent EI remain to be elucidated. We aimed to investigate whether circulating peptide YY3–36 (PYY3–36) and glucagon-like peptide-1 (GLP-1 or GCG as listed in the HUGO Database) levels depend on exercise intensity, which could affect subsequent EI. Ten young male subjects (mean±s.d., age: 23.4±4.3 years, body mass index: 22.5±1.0 kg/m2, and maximum oxygen uptake (VO2 max): 45.9±8.5 ml/kg per min) received a standardized breakfast, which was followed by constant cycling exercise at 75% VO2 max (high intensity session), 50% VO2 max (moderate intensity session), or rest (resting session) for 30 min. At lunch, a test meal was presented, and EI was calculated. Blood samples were obtained during three sessions for measurements of glucose, insulin, PYY3–36, and GLP-1, which includes GLP-1 (7–36) amide and GLP-1 (9–36) amide. Increases in blood PYY3–36 levels were dependent on the exercise intensity (effect of session: P<0.001 by two-way ANOVA), whereas those in GLP-1 levels were similar between two different exercise sessions. Of note, increase in area under the curve values for GLP-1 levels was negatively correlated with decrease in the EI in each exercise session (high: P<0.001, moderate: P=0.002). The present findings raise the possibility that each gut hormone exhibits its specific blood kinetics in response to two different intensities of exercise stimuli and might play differential roles in regulation of EI after exercise.


2015 ◽  
Vol 117 (4) ◽  
pp. 602-610 ◽  
Author(s):  
Joanna L. Varley-Campbell ◽  
Melanie S. Moore ◽  
Craig A. Williams

AbstractEnergy intake (EI) and energy expenditure (EE) should not be considered independent entities, but more an inter-connected system. With increased physical activity and reduced snacking initiatives as prevalent Public Health measures, any changes to subsequent EI from these recommendations should be monitored. The aim of this study was to investigate changes in acute EI and appetite over four conditions: (1) a control condition with no snack and no exercise (CON); (2) a snack condition (+1 MJ; SK); (3) a moderate-intensity cycling exercise condition (−1 MJ; EX); and finally (4) both snack and exercise condition (+1 MJ, −1 MJ; EXSK). Acute changes in appetite (visual analogue scale) and lunchtime EI (ad libitum pizza meal) were recorded in twenty boys and eighteen girls (12–13 years). Lunch EI was not significantly different between conditions or sexes (P>0·05). Relative EI was calculated, where the energy manipulation (+1 MJ from the snack or −1 MJ from the exercise) was added to lunchtime EI. Relative EI indicated no significant differences between the sexes (P>0·05); however, in the EX condition, relative EI was significantly lower (P<0·001) compared with all other conditions. Appetite increased significantly over time (P<0·001) and was significantly higher in the CON and EX conditions compared with the SK and EXSK conditions. No significant sex differences were found between conditions. When aiming to evoke an acute energy deficit, increasing EE created a significantly larger relative energy deficit than the removal of the mid-morning snack. Sex was not a confounder to influence EI or appetite between any of the conditions.


2019 ◽  
Vol 123 (5) ◽  
pp. 592-600
Author(s):  
D. Thivel ◽  
J. Roche ◽  
M. Miguet ◽  
A. Fillon ◽  
M. Khammassi ◽  
...  

AbstractExercise modifies energy intake (EI) in adolescents with obesity, but whether this is mediated by the exercise-induced energy deficit remains unknown. The present study examined the effect of exercise with and without dietary replacement of the exercise energy expenditure on appetite, EI and food reward in adolescents with obesity. Fourteen 12–15-year-old adolescents with obesity (eight girls; Tanner 3–4; BMI 34·8 (sd 5·7) kg/m2; BMI z score 2·3 (sd 0·4)) randomly completed three experimental conditions: (i) rest control (CON); (ii) 30-min cycling (EX) and (iii) 30-min cycling with dietary energy replacement (EX + R). Ad libitum EI was assessed at lunch and dinner, and food reward (Leeds Food Preference Questionnaire) before and after lunch. Appetite was assessed at regular intervals. Lunch, evening and total EI (excluding the post-exercise snack in EX − R) were similar across conditions. Lunch and total EI including the post-exercise snack in EX + R were higher in EX − R than CON and EX; EX and CON were similar. Total relative EI was lower in EX (6284 (sd 2042) kJ) compared with CON (7167 (sd 2218) kJ; P < 0·05) and higher in EX + R (7736 (sd 2033) kJ) compared with CON (P < 0·001). Appetite and satiety quotients did not differ across conditions (P ≥ 0·10). Pre-meal explicit liking for fat was lower in EX compared with CON and EX + R (P = 0·05). There was time by condition interaction between EX and CON for explicit wanting and liking for fat (P = 0·01). Despite similar appetite and EI, adolescents with obesity do not adapt their post-exercise food intake to account for immediate dietary replacement of the exercise-induced energy deficit, favouring a short-term positive energy balance.


2021 ◽  
Vol 06 (04) ◽  
pp. 1-1
Author(s):  
Richard B. Kreider ◽  

Obesity has historically been thought to simply be related to an imbalance between energy intake and expenditure. Weight loss recommendations have traditionally focused on reducing energy intake, maintaining either a high-carbohydrate low-fat diet or vice versa, and increasing physical activity typically through low to moderate intensity exercise. More recently, genetic, physiological, and behavioral factors have also been found to play a significant role in the etiology of obesity. For this reason, the prevention and management of obesity through implementation of different types of exercise and diet intervention programs, behavioral interventions, and/or medical interventions are at the forefront of obesity research. As a result, we are beginning to see a paradigm shift from traditional weight loss and management approaches to personalized diet and exercise strategies. This purpose of this narrative review was to overview: 1.) the effects of physical activity on weight loss; 2.) the effects of diet and cardiovascular exercise on weight loss; 3.) the effects of high protein diet with resistance-exercise on weight loss; and, 4.) behavioral factors that contribute weight loss and maintenance.


Sign in / Sign up

Export Citation Format

Share Document