CCRI-DEFICIENT MICE SHOW ENHANCED INNATE IMMUNE RESPONSES AND ARE PROTECTED IN A CLP MODEL OF SEPSIS

Shock ◽  
2004 ◽  
Vol 21 (Supplement) ◽  
pp. 69
Author(s):  
T. L. Ness ◽  
K. J. Carpenter ◽  
J. L. Ewing ◽  
C. M. Hogaboam ◽  
S L Kunkel
mBio ◽  
2019 ◽  
Vol 10 (4) ◽  
Author(s):  
Bin Zhou ◽  
Fei Qi ◽  
Fangyi Wu ◽  
Hongbo Nie ◽  
Yifan Song ◽  
...  

ABSTRACT Endogenous retroviruses (ERVs) are transposable elements that cause host genome instability and usually play deleterious roles in disease such as tumorigenesis. Recent advances also suggest that this “enemy within” may encode a viral mimic to induce antiviral immune responses through viral sensors. Here, through whole-genome transcriptome analysis with RNA sequencing (RNA-Seq), we discovered that a full-length ERV-derived long noncoding RNA (lncRNA), designated lnc-EPAV (ERV-derived lncRNA positively regulates antiviral responses), was a positive regulator of NF-κB signaling. lnc-EPAV expression was rapidly upregulated by viral RNA mimics or RNA viruses to facilitate the expression of RELA, an NF-κB subunit that plays a crucial role in antiviral responses. Transcriptome analysis of lnc-EPAV-silenced macrophages showed that lnc-EPAV was critical for RELA target gene expression and innate immune responses. Consistently, lnc-EPAV-deficient mice exhibited reduced expression of type I interferons (IFNs) and, consequently, increased viral loads and mortality following lethal RNA virus infection. Mechanistically, lnc-EPAV promoted expression of RELA by competitively binding to and displacing SFPQ, a transcriptional repressor of Rela. Altogether, our work demonstrates an alternative mechanism by which ERVs regulate antiviral immune responses. IMPORTANCE Endogenous retroviruses are transposable genetic elements comprising 8% to 10% of the human and mouse genomes. Although most ERVs have been inactivated due to deleterious mutations, some are still transcribed. However, the biological functions of transcribed ERVs are largely unknown. Here, we identified a full-length ERV-derived lncRNA, designated lnc-EPAV, as a positive regulator of host innate immune responses. We found that silencing lnc-EPAV impaired virus-induced cytokine production, resulting in increased viral replication in cells. The lnc-EPAV-deficient mice exhibited enhanced susceptibility to viral challenge. We also found that lnc-EPAV regulated expression of RELA, an NF-κB subunit that plays a critical role in antiviral responses. ERV-derived lncRNA coordinated with a transcription repressor, SFPQ, to control Rela transcription. Our report provides new insights into the previously unrecognized immune gene regulatory mechanism of ERV-derived lncRNAs.


2011 ◽  
Vol 208 (8) ◽  
pp. 1673-1682 ◽  
Author(s):  
Kindra M. Kelly-Scumpia ◽  
Philip O. Scumpia ◽  
Jason S. Weinstein ◽  
Matthew J. Delano ◽  
Alex G. Cuenca ◽  
...  

Microbes activate pattern recognition receptors to initiate adaptive immunity. T cells affect early innate inflammatory responses to viral infection, but both activation and suppression have been demonstrated. We identify a novel role for B cells in the early innate immune response during bacterial sepsis. We demonstrate that Rag1−/− mice display deficient early inflammatory responses and reduced survival during sepsis. Interestingly, B cell–deficient or anti-CD20 B cell–depleted mice, but not α/β T cell–deficient mice, display decreased inflammatory cytokine and chemokine production and reduced survival after sepsis. Both treatment of B cell–deficient mice with serum from wild-type (WT) mice and repletion of Rag1−/− mice with B cells improves sepsis survival, suggesting antibody-independent and antibody-dependent roles for B cells in the outcome to sepsis. During sepsis, marginal zone and follicular B cells are activated through type I interferon (IFN-I) receptor (IFN-α/β receptor [IFNAR]), and repleting Rag1−/− mice with WT, but not IFNAR−/−, B cells improves IFN-I–dependent and –independent early cytokine responses. Repleting B cell–deficient mice with the IFN-I–dependent chemokine, CXCL10 was also sufficient to improve sepsis survival. This study identifies a novel role for IFN-I–activated B cells in protective early innate immune responses during bacterial sepsis.


2021 ◽  
Vol 118 (35) ◽  
pp. e2106685118
Author(s):  
Yujie Tian ◽  
Jiaoyan Lv ◽  
Ziyan Su ◽  
Tao Wu ◽  
Xiaoguang Li ◽  
...  

Perturbation of lung homeostasis is frequently associated with progressive and fatal respiratory diseases, such as pulmonary fibrosis. Leucine-rich repeat kinase 2 (LRRK2) is highly expressed in healthy lungs, but its functions in lung homeostasis and diseases remain elusive. Herein, we showed that LRRK2 expression was clearly reduced in mammalian fibrotic lungs, and LRRK2-deficient mice exhibited aggravated bleomycin-induced pulmonary fibrosis. Furthermore, we demonstrated that in bleomycin-treated mice, LRRK2 expression was dramatically decreased in alveolar type II epithelial (AT2) cells, and its deficiency resulted in profound dysfunction of AT2 cells, characterized by impaired autophagy and accelerated cellular senescence. Additionally, LRRK2-deficient AT2 cells showed a higher capacity of recruiting profibrotic macrophages via the CCL2/CCR2 signaling, leading to extensive macrophage-associated profibrotic responses and progressive pulmonary fibrosis. Taken together, our study demonstrates that LRRK2 plays a crucial role in preventing AT2 cell dysfunction and orchestrating the innate immune responses to protect against pulmonary fibrosis.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 1274-1274
Author(s):  
Gernot Schabbauer ◽  
Nikolina Papac-Milicevic ◽  
Pavel Uhrin ◽  
Bernd Binder

Abstract Sepsis is still a major burden for the society with a high incidence of morbidity and mortality each year. Molecular mechanisms underlying the systemic inflammatory response syndrome (SIRS) associated with sepsis are still ill defined and most therapies developed to target the acute inflammatory component of the disease are insufficent. Recently the role of nuclear receptors (NRs) in transcriptional regulation of inflammatory processes became a major topic of interest. Nuclear receptors, such as the peroxisome proliferators-activated receptors (PPARs), have been found to exert anti-inflammatory properties by interfering with the NFkB pathway. We are interested in the nuclear envelope protein, interferon stimulated gene 12 (ISG12), which directly interacts with NRs. ISG12 is a co-factor stimulating nuclear export of NRs, thereby reducing the anti-inflammatory potential of NRs such as PPARg or NR4A1. To examine the role of ISG12 in acute inflammation we generated ISG12 deficient mice. We can demonstrate by reverse genetics in ISG12 deficient mice that lack of ISG12 is beneficial in experimental sepsis and endotoxemia. Furthermore we can show that several acute inflammatory parameters, such as systemic IL6 cytokine levels, are downregulated in septic ISG12-/- animals. Consistently, similar results could be obtained in in vitro experiments in peritoneal macrophages derived from ISG12 deficient mice. In contrast, mice deficient for the nuclear receptor NR4A1 exhibited an exacerbated innate immune response and showed a significantly higher mortality after lethal septic challenge. This dramatic phenotype could be restored in ISG12/NR4A1 double deficient mice. We conclude from our data in vitro and in vivo that ISG12 is a novel modulator of innate immune responses regulating anti-inflammatory nuclear receptors such as NR4A1.


2015 ◽  
Vol 29 (3) ◽  
pp. 119-129 ◽  
Author(s):  
Richard J. Stevenson ◽  
Deborah Hodgson ◽  
Megan J. Oaten ◽  
Luba Sominsky ◽  
Mehmet Mahmut ◽  
...  

Abstract. Both disgust and disease-related images appear able to induce an innate immune response but it is unclear whether these effects are independent or rely upon a common shared factor (e.g., disgust or disease-related cognitions). In this study we directly compared these two inductions using specifically generated sets of images. One set was disease-related but evoked little disgust, while the other set was disgust evoking but with less disease-relatedness. These two image sets were then compared to a third set, a negative control condition. Using a wholly within-subject design, participants viewed one image set per week, and provided saliva samples, before and after each viewing occasion, which were later analyzed for innate immune markers. We found that both the disease related and disgust images, relative to the negative control images, were not able to generate an innate immune response. However, secondary analyses revealed innate immune responses in participants with greater propensity to feel disgust following exposure to disease-related and disgusting images. These findings suggest that disgust images relatively free of disease-related themes, and disease-related images relatively free of disgust may be suboptimal cues for generating an innate immune response. Not only may this explain why disgust propensity mediates these effects, it may also imply a common pathway.


2014 ◽  
Vol 9 (S 01) ◽  
Author(s):  
MP Ashton ◽  
I Tan ◽  
L Mackin ◽  
C Elso ◽  
E Chu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document