Intestinal epithelial hyperpermeability: update on the pathogenesis of gut mucosal barrier dysfunction in critical illness

2003 ◽  
Vol 9 (2) ◽  
pp. 143-151 ◽  
Author(s):  
Mitchell P. Fink
2020 ◽  
Vol 2020 ◽  
pp. 1-8 ◽  
Author(s):  
Xia Liu ◽  
Yiwen Cheng ◽  
Li Shao ◽  
Zongxin Ling

Growing evidence indicated that the gut microbiota was the intrinsic and essential component of the cancer microenvironment, which played vital roles in the development and progression of colorectal cancer (CRC). In our present study, we investigated the alterations of fecal abundant microbiota with real-time quantitative PCR and the changes of indicators of gut mucosal barrier from 53 early-stage CRC patients and 45 matched healthy controls. We found that the traditional beneficial bacteria such as Lactobacillus and Bifidobacterium decreased significantly and the carcinogenic bacteria such as Enterobacteriaceae and Fusobacterium nucleatum were significantly increased in CRC patients. We also found gut mucosal barrier dysfunction in CRC patients with increased levels of endotoxin (LPS), D-lactate, and diamine oxidase (DAO). With Pearson’s correlation analysis, D-lactate, LPS, and DAO were correlated negatively with Lactobacillus and Bifidobacterium and positively with Enterobacteriaceae and F. nucleatum. Our present study found dysbiosis of the fecal microbiota and dysfunction of the gut mucosal barrier in patients with early-stage CRC, which implicated that fecal abundant bacteria and gut mucosal barrier indicators could be used as targets to monitor the development and progression of CRC in a noninvasive and dynamic manner.


2017 ◽  
Vol 41 (1) ◽  
pp. 43-51
Author(s):  
Qing Shen ◽  
Zhengrong Li ◽  
Shanshan Huang ◽  
Liman Li ◽  
Hua Gan ◽  
...  

Background: Dysfunction of the intestinal mucosal barrier plays an important role in the pathophysiology of severe acute pancreatitis (SAP). Continuous blood purification (CBP) has been shown to improve the prognosis of SAP patients. In order to investigate the effect of CBP on intestinal mucosal barrier dysfunction in SAP patients with MODS, we conducted in vivo and in vitro experiments to explore the underlying mechanisms. Methods: The markers for the assessment of intestinal mucosal barrier function including serum diamine oxidase (DAO), endotoxin and intestinal epithelial monolayer permeability were detected during CBP therapy. The distribution and expression of cytoskeleton protein F-actin and tight junction proteins claudin-1 were observed. In addition, Rho kinase (ROCK) mRNA expression and serum tumor necrosis factor-alpha (TNF-α) levels during CBP were determined. Results: SAP patients with MODS had increased levels of serum DAO, endotoxin and intestinal epithelial monolayer permeability when compared with normal controls. While the distribution of F-actin and claudin-1 was rearranged, and the expression of claudin-1 significantly decreased, but F-actin had no change. Meanwhile, ROCK mRNA expression and serum TNF-α level were increased. However, after CBP treatment, levels of serum DAO, endotoxin and intestinal epithelial monolayer permeability decreased. The F-actin and claudin-1 reorganization attenuated and the expression of claudin-1 increased. At the same time, ROCK mRNA expression and serum TNF-α level were decreased. Conclusions: CBP can effectively improve intestinal mucosal barrier dysfunction. The beneficial effect is associated with the improvement of cytoskeleton and tight junction proteins in stability by downregulation of ROCK mRNA expression through the removal of excess proinflammatory factors.


2005 ◽  
Vol 33 ◽  
pp. A32
Author(s):  
Carlos A Macias ◽  
Jeffrey W Chiao ◽  
Yulia Y Tyurina ◽  
Peter Wipf ◽  
Jingbo Xiao ◽  
...  

Antioxidants ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 303
Author(s):  
Haiwei Liang ◽  
Ning Liu ◽  
Renjie Wang ◽  
Yunchang Zhang ◽  
Jingqing Chen ◽  
...  

Apoptosis of intestinal epithelial cells following oxidative stress is a major cause of mucosal barrier dysfunction and is associated with the pathogenesis of various gastrointestinal diseases. Although L-tryptophan (Trp) is known to improve intestinal integrity and function, a beneficial effect of N-acetyl serotonin (NAS), a metabolite of Trp, on the apoptosis of enterocytes and the underlying mechanisms remain largely unknown. In the present study, we showed that porcine enterocytes treated with 4-hydroxy-2-nonenal (4-HNE), a metabolite of lipid peroxidation, led to upregulation of apoptotic proteins, including Bax and cleaved caspase-3, and reduction of tight junction proteins. These effects of 4-HNE were significantly abrogated by NAS. In addition, NAS reduced ROS accumulation while increasing the intracellular concentration of glutathione (GSH), and the abundance of the Nrf2 protein in the nucleus and its downstream target proteins. Importantly, these protective effects of NAS were abrogated by Atra, an inhibitor of Nrf2, indicating a dependence on Nrf2 signaling. Taken together, we demonstrated that NAS attenuated oxidative stress-induced cellular injury in porcine enterocytes by regulating Nrf2 signaling. These findings provide new insights into a functional role of NAS in maintaining intestinal homeostasis.


Author(s):  
Ming Xin Li ◽  
Jun Feng Liu ◽  
Jian Da Lu ◽  
Ying Zhu ◽  
Ding Wei Kuang ◽  
...  

Critical Care ◽  
2014 ◽  
Vol 18 (S2) ◽  
Author(s):  
KL Calisto ◽  
ACAP Camacho ◽  
FC Mittestainer ◽  
MCS Mendes ◽  
AC Santos ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document