Peroxidative stress and antioxidant enzymes in children with β-thalassemia major

2016 ◽  
Vol 15 (2) ◽  
pp. 57-62 ◽  
Author(s):  
Ahmed M. Ezzat ◽  
Ghada S. Abdelmotaleb ◽  
Ashraf M. Shaheen ◽  
Yasser M. Ismail ◽  
Aliaa M. Diab
2006 ◽  
Vol 46 (7) ◽  
pp. 780-785 ◽  
Author(s):  
Rahul Naithani ◽  
Jagdish Chandra ◽  
Jayashree Bhattacharjee ◽  
Priyanka Verma ◽  
Shashi Narayan

Anemia ◽  
2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Q. Shazia ◽  
Z. H. Mohammad ◽  
Taibur Rahman ◽  
Hossain Uddin Shekhar

Beta thalassemia major is an inherited disease resulting from reduction or total lack of beta globin chains. Patients with this disease need repeated blood transfusion for survival. This may cause oxidative stress and tissue injury due to iron overload, altered antioxidant enzymes, and other essential trace element levels. The aim of this review is to scrutinize the relationship between oxidative stress and serum trace elements, degree of damage caused by oxidative stress, and the role of antioxidant enzymes in beta thalassemia major patients. The findings indicate that oxidative stress in patients with beta thalassemia major is mainly caused by tissue injury due to over production of free radical by secondary iron overload, alteration in serum trace elements and antioxidant enzymes level. The role of trace elements like selenium, copper, iron, and zinc in beta thalassemia major patients reveals a significant change of these trace elements. Studies published on the status of antioxidant enzymes like catalase, superoxide dismutase, glutathione, and glutathione S-transferase in beta thalassemia patients also showed variable results. The administration of selective antioxidants along with essential trace elements and minerals to reduce the extent of oxidative damage and related complications in beta thalassemia major still need further evaluation.


2006 ◽  
Vol 76 (5) ◽  
pp. 324-331 ◽  
Author(s):  
Marsh ◽  
Laursen ◽  
Coombes

Erythrocytes transport oxygen to tissues and exercise-induced oxidative stress increases erythrocyte damage and turnover. Increased use of antioxidant supplements may alter protective erythrocyte antioxidant mechanisms during training. Aim of study: To examine the effects of antioxidant supplementation (α-lipoic acid and α-tocopherol) and/or endurance training on the antioxidant defenses of erythrocytes. Methods: Young male Wistar rats were assigned to (1) sedentary; (2) sedentary and antioxidant-supplemented; (3) endurance-trained; or (4) endurance-trained and antioxidant-supplemented groups for 14 weeks. Erythrocyte superoxide dismutase (SOD), glutathione peroxidase (GPX), and catalase (CAT) activities, and plasma malondialdehyde (MDA) were then measured. Results: Antioxidant supplementation had no significant effect (p > 0.05) on activities of antioxidant enzymes in sedentary animals. Similarly, endurance training alone also had no effect (p > 0.05). GPX (125.9 ± 2.8 vs. 121.5 ± 3.0 U.gHb–1, p < 0.05) and CAT (6.1 ± 0.2 vs. 5.6 ± 0.2 U.mgHb–1, p < 0.05) activities were increased in supplemented trained animals compared to non-supplemented sedentary animals whereas SOD (61.8 ± 4.3 vs. 52.0 ± 5.2 U.mgHb–1, p < 0.05) activity was decreased. Plasma MDA was not different among groups (p > 0.05). Conclusions: In a rat model, the combination of exercise training and antioxidant supplementation increased antioxidant enzyme activities (GPX, CAT) compared with each individual intervention.


2010 ◽  
Vol 80 (1) ◽  
pp. 65-73 ◽  
Author(s):  
Pei-Min Chao ◽  
Wan-Hsuan Chen ◽  
Chun-Huei Liao ◽  
Huey-Mei Shaw

Conjugated linoleic acid (CLA) is a collective term for the positional and geometric isomers of a conjugated diene of linoleic acid (C18:2, n-6). The aims of the present study were to evaluate whether levels of hepatic α-tocopherol, α-tocopherol transfer protein (α-TTP), and antioxidant enzymes in mice were affected by a CLA-supplemented diet. C57BL/6 J mice were divided into the CLA and control groups, which were fed, respectively, a 5 % fat diet with or without 1 g/100 g of CLA (1:1 mixture of cis-9, trans-11 and trans-10, cis-12) for four weeks. α-Tocopherol levels in plasma and liver were significantly higher in the CLA group than in the control group. Liver α-TTP levels were also significantly increased in the CLA group, the α-TTP/β-actin ratio being 2.5-fold higher than that in control mice (p<0.01). Thiobarbituric acid-reactive substances were significantly decreased in the CLA group (p<0.01). There were no significant differences between the two groups in levels of three antioxidant enzymes (superoxide dismutase, glutathione peroxidase, and catalase). The accumulation of liver α-tocopherol seen with the CLA diet can be attributed to the antioxidant potential of CLA and the ability of α-TTP induction. The lack of changes in antioxidant enzyme protein levels and the reduced lipid peroxidation in the liver of CLA mice are due to α-tocopherol accumulation.


2020 ◽  
Vol 18 (04) ◽  
pp. 214-216
Author(s):  
Soumya Roy

AbstractA 9-year-old girl patient presented with left-sided weakness and joint contractures developing over a period of 18 months. She was known to be suffering from β-thalassemia major and was on regular blood transfusions. Eighteen months ago, she had suffered from an episode of ischemic cerebrovascular accident affecting the right side of her brain. Magnetic resonance angiogram revealed vaso-occlusive disease affecting mainly the anterior cerebral circulation, resembling Moyamoya disease. She was advised to carry out regular physiotherapy but her parents discontinued it, which resulted in the gradual development of joint contractures and muscle wasting.


Sign in / Sign up

Export Citation Format

Share Document