scholarly journals Immunologic Consequences of Hypoxia during Critical Illness

2016 ◽  
Vol 125 (1) ◽  
pp. 237-249 ◽  
Author(s):  
Harmke D. Kiers ◽  
Gert-Jan Scheffer ◽  
Johannes G. van der Hoeven ◽  
Holger K. Eltzschig ◽  
Peter Pickkers ◽  
...  

Abstract Hypoxia and immunity are highly intertwined at clinical, cellular, and molecular levels. The prevention of tissue hypoxia and modulation of systemic inflammation are cornerstones of daily practice in the intensive care unit. Potentially, immunologic effects of hypoxia may contribute to outcome and represent possible therapeutic targets. Hypoxia and activation of downstream signaling pathways result in enhanced innate immune responses, aimed to augment pathogen clearance. On the other hand, hypoxia also exerts antiinflammatory and tissue-protective effects in lymphocytes and other tissues. Although human data on the net immunologic effects of hypoxia and pharmacologic modulation of downstream pathways are limited, preclinical data support the concept of tailoring the immune response through modulation of the oxygen status or pharmacologic modulation of hypoxia-signaling pathways in critically ill patients.

2009 ◽  
Vol 296 (3) ◽  
pp. G601-G611 ◽  
Author(s):  
Kristen L. W. Walton ◽  
Lisa Holt ◽  
R. Balfour Sartor

Myofibroblasts (MF) play an important role in intestinal wound healing. A compromised epithelial barrier exposes intestinal subepithelial MF to luminal bacterial products. However, responses of murine intestinal MF to bacterial adjuvants and potential roles of intestinal MF in innate immune responses are not well defined. Our aims in this study were to determine innate immune responses and intracellular signaling pathways of intestinal MF exposed to LPS, a prototypic Toll-like receptor (TLR) ligand. Expression of TLR4 in primary murine intestinal MF cultures was confirmed by RT-PCR and Western blotting. LPS-induced secretion of prostaglandin E2 (PGE2), interleukin (IL)-6, and keratinocyte-derived chemokines (KC) was measured by ELISA. Intracellular responses to LPS were assessed by Western blotting for NF-κB p65, Iκ-Bα, Akt, p38 MAP kinase, and cyclooxygenase-2 (COX-2). LPS induced rapid phosphorylation of NF-κB p65, Akt, and p38 MAPK and degradation of Iκ-Bα. LPS induced expression of COX-2 and secretion of PGE2 (2.0 ± 0.8-fold induction vs. unstimulated cells), IL-6 (6.6 ± 0.4-fold induction), and KC (12.5 ± 0.4-fold induction). Inhibition of phosphoinositide-3 (PI3)-kinase, p38 MAPK, or NF-κB pathways reduced LPS-induced PGE2, IL-6, and KC secretion. These studies show that primary murine intestinal MF respond to LPS, evidenced by activation of NF-κB, PI3-kinase, and MAPK signaling pathways and secretion of proinflammatory molecules. Inhibition of these pathways attenuated LPS-dependent PGE2, IL-6, and KC production, indicating that LPS activates MF by multiple signaling pathways. These data support the hypothesis that MF are a component of the innate immune system and may exert paracrine effects on adjacent epithelial and immune cells by responding to luminal bacterial adjuvants.


2021 ◽  
Vol 12 ◽  
Author(s):  
Amanda L. Verzosa ◽  
Lea A. McGeever ◽  
Shun-Je Bhark ◽  
Tracie Delgado ◽  
Nicole Salazar ◽  
...  

Alphaherpesviruses (α-HV) are a large family of double-stranded DNA viruses which cause many human and animal diseases. There are three human α-HVs: Herpes Simplex Viruses (HSV-1 and HSV-2) and Varicella Zoster Virus (VZV). All α-HV have evolved multiple strategies to suppress or exploit host cell innate immune signaling pathways to aid in their infections. All α-HVs initially infect epithelial cells (primary site of infection), and later spread to infect innervating sensory neurons. As with all herpesviruses, α-HVs have both a lytic (productive) and latent (dormant) stage of infection. During the lytic stage, the virus rapidly replicates in epithelial cells before it is cleared by the immune system. In contrast, latent infection in host neurons is a life-long infection. Upon infection of mucosal epithelial cells, herpesviruses immediately employ a variety of cellular mechanisms to evade host detection during active replication. Next, infectious viral progeny bud from infected cells and fuse to neuronal axonal terminals. Here, the nucleocapsid is transported via sensory neuron axons to the ganglion cell body, where latency is established until viral reactivation. This review will primarily focus on how HSV-1 induces various innate immune responses, including host cell recognition of viral constituents by pattern-recognition receptors (PRRs), induction of IFN-mediated immune responses involving toll-like receptor (TLR) signaling pathways, and cyclic GMP‐AMP synthase stimulator of interferon genes (cGAS-STING). This review focuses on these pathways along with other mechanisms including autophagy and the complement system. We will summarize and discuss recent evidence which has revealed how HSV-1 is able to manipulate and evade host antiviral innate immune responses both in neuronal (sensory neurons of the trigeminal ganglia) and non-neuronal (epithelial) cells. Understanding the innate immune response mechanisms triggered by HSV-1 infection, and the mechanisms of innate immune evasion, will impact the development of future therapeutic treatments.


2014 ◽  
Vol 86 (10) ◽  
pp. 1483-1538 ◽  
Author(s):  
John A. Robinson ◽  
Kerstin Moehle

Abstract The vertebrate immune system uses pattern recognition receptors (PRRs) to detect a large variety of molecular signatures (pathogen-associated molecular patterns, PAMPs) from a broad range of different invading pathogens. The PAMPs range in size from relatively small molecules, to others of intermediate size such as bacterial lipopolysaccharide, lipopeptides, and oligosaccharides, to macromolecules such as viral DNA, RNA, and pathogen-derived proteins such as flagellin. Underlying this functional diversity of PRRs is a surprisingly small number of structurally distinct protein folds that include leucine-rich repeats in Toll-like receptors (TLRs) and NOD-like receptors (NLRs), the DExH box helicase domain in RIG-like receptors (RLRs), and C-type lectin domains (CTLDs) in the C-type lectins. Following PAMP recognition by the PRRs, downstream signaling pathways activate the innate immune system to respond to invading pathogenic organisms. The resulting stimulatory response is also vital for a balanced adaptive immune response to the pathogen, mediated by circulating antibodies and/or cytotoxic T cells. However, an aberrant stimulation of the innate immune system can also lead to excessive inflammatory and toxic stress responses. Exciting opportunities are now arising for the design of small synthetic molecules that bind to PRRs and influence downstream signaling pathways. Such molecules can be useful tools to modulate immune responses, for example, as adjuvants to stimulate adaptive immune responses to a vaccine, or as therapeutic agents to dampen aberrant immune responses, such as inflammation. The design of agonists or antagonists of PRRs can now benefit from a surge in knowledge of the 3D structures of PRRs, many in complexes with their natural ligands. This review article describes recent progress in structural studies of PRRs (TLRs, NLRs, CTLs, and RLRs), which is required for an understanding of how they specifically recognize structurally diverse “foreign” PAMPs amongst a background of other “self” molecules, sometimes closely related in structure, that are present in the human body.


2021 ◽  
Author(s):  
Mingkai Feng ◽  
Qiao Zhang ◽  
Wenjiao Wu ◽  
Lizhu Chen ◽  
Shuyin Gu ◽  
...  

Guanylate-binding protein 7 (GBP7) belongs to the GBP family, which plays key roles in mediating innate immune responses to intracellular pathogens. Thus far, GBP7 has been reported to be a critical cellular factor against bacterial infection. However, the relationship between GBP7 and influenza A virus (IAV) replication is unknown. Here, we showed that GBP7 expression was significantly up-regulated in the lungs of mice, human peripheral blood mononuclear cells (PBMCs), and A549 cells during IAV infection. Using the CRISPR-Cas9 system and overexpression approaches, it was found that GBP7 knockout inhibited IAV replication by enhancing the expression of IAV-induced type I interferon (IFN), type III IFN, and proinflammatory cytokines. Conversely, overexpression of GBP7 facilitated IAV replication by suppressing the expression of those factors. Furthermore, GBP7 knockout enhanced IAV-induced nuclear factor-κB (NF-κB) activation and phosphorylation of stat1 and stat2, overexpression of GBP7 had the opposite effect. Our data indicated that GBP7 suppresses innate immune responses to IAV infection via NF-κB and JAK-STAT signaling pathways. Taken together, upon IAV infection, the induced GBP7 facilitated IAV replication by suppressing innate immune responses to IAV infection, which suggested that GBP7 might serve as a potential therapeutic target for controlling IAV infection. IMPORTANCE So far, few studies have mentioned the distinct function of guanylate-binding protein 7 (GBP7) on virus infection. Here, we reported that GBP7 expression was significantly up-regulated in the lungs of mice, human PBMCs, and A549 cells during IAV infection. GBP7 facilitated IAV replication by suppressing the expression of type I interferon (IFN), type III IFN, and proinflammatory cytokines. Furthermore, it was indicated that GBP7 suppresses innate immune responses to IAV infection via NF-κB and JAK-STAT signaling pathways. Taken together, our results elucidate a critical role of GBP7 in host immune system during IAV infection.


2021 ◽  
Vol 19 ◽  
Author(s):  
Kai Chen ◽  
Chuan Lai ◽  
Yin Su ◽  
Wen Dai Bao ◽  
Liu Nan Yang ◽  
...  

: The presence of foreign or misplaced nucleic acids is a danger signal that triggers innate immune responses through activating cytosolic DNA sensor cyclic GMP-AMP synthase (cGAS) and binding to its downstream signaling effector stimulator of interferon genes (STING). Then the cGAS–STING pathway activation links nucleic acid sensing to immune responses and pathogenic entities clearance. However, overactivation of this signaling pathway leads to fatal immune disorders and contributes to the progression of many human inflammatory diseases. Therefore, optimal activation of this pathway is crucial for the elimination of invading pathogens and the maintenance of immune homeostasis. In this review, we will summarize its fundamental roles in initiating host defense against invading pathogens and discuss its pathogenic roles in multiple neuro-inflammatory diseases, such as Alzheimer’s disease (AD), Parkinson’s disease (PD), Huntington's disease (HD), amyotrophic lateral sclerosis (ALS), multiple sclerosis (MS) and other neurodegenerative diseases.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Yajuan Rui ◽  
Jiaming Su ◽  
Si Shen ◽  
Ying Hu ◽  
Dingbo Huang ◽  
...  

AbstractThe emergence of SARS-CoV-2 has resulted in the COVID-19 pandemic, leading to millions of infections and hundreds of thousands of human deaths. The efficient replication and population spread of SARS-CoV-2 indicates an effective evasion of human innate immune responses, although the viral proteins responsible for this immune evasion are not clear. In this study, we identified SARS-CoV-2 structural proteins, accessory proteins, and the main viral protease as potent inhibitors of host innate immune responses of distinct pathways. In particular, the main viral protease was a potent inhibitor of both the RLR and cGAS-STING pathways. Viral accessory protein ORF3a had the unique ability to inhibit STING, but not the RLR response. On the other hand, structural protein N was a unique RLR inhibitor. ORF3a bound STING in a unique fashion and blocked the nuclear accumulation of p65 to inhibit nuclear factor-κB signaling. 3CL of SARS-CoV-2 inhibited K63-ubiquitin modification of STING to disrupt the assembly of the STING functional complex and downstream signaling. Diverse vertebrate STINGs, including those from humans, mice, and chickens, could be inhibited by ORF3a and 3CL of SARS-CoV-2. The existence of more effective innate immune suppressors in pathogenic coronaviruses may allow them to replicate more efficiently in vivo. Since evasion of host innate immune responses is essential for the survival of all viruses, our study provides insights into the design of therapeutic agents against SARS-CoV-2.


2021 ◽  
Author(s):  
Wangsheng Ji ◽  
Lianfei Zhang ◽  
Xiaoyu Xu ◽  
Xinqi Liu

Stimulator of IFN genes (STING), an endoplasmic reticulum (ER) signaling adaptor, is essential for the type I interferon response to cytosolic dsDNA. The translocation from the ER to perinuclear vesicles following binding cGAMP is a critical step for STING to activate downstream signaling molecules, which lead to the production of interferon and pro-inflammatory cytokines. Here we found that apoptosis-linked gene 2 (ALG2) suppressed STING signaling induced by either HSV-1 infection or cGAMP presence. Knockout of ALG2 markedly facilitated the expression of type I interferons upon cGAMP treatment or HSV-1 infection in THP-1 monocytes. Mechanistically, ALG2 associated with the C-terminal tail (CTT) of STING and inhibited its trafficking from ER to perinuclear region. Furthermore, the ability of ALG2 to coordinate calcium was crucial for its regulation of STING trafficking and DNA-induced innate immune responses. This work suggests that ALG2 is involved in DNA-induced innate immune responses by regulating STING trafficking.


Sign in / Sign up

Export Citation Format

Share Document