scholarly journals Identification of Melanoma-reactive CD4+ T-Cell Subsets From Human Melanoma Draining Lymph Nodes

2016 ◽  
Vol 39 (1) ◽  
pp. 15-26 ◽  
Author(s):  
Mei Zhang ◽  
Hallie Graor ◽  
Lu Yan ◽  
Julian Kim
2017 ◽  
Vol 41 (1) ◽  
pp. 1-11 ◽  
Author(s):  
Yasmin Vahidi ◽  
Zahra Faghih ◽  
Abdol-Rasoul Talei ◽  
Mehrnoosh Doroudchi ◽  
Abbas Ghaderi

2020 ◽  
Author(s):  
Yasmin Vahidi ◽  
Mandana Bagheri ◽  
Abbas Ghaderi ◽  
Zahra Faghih

Abstract Background: Human immunological memory is a hallmark of the adaptive immune system and plays an important role in the development of effective immune responses against tumors. In the present study, we aimed to determine the frequencies of CD8+ memory T cell subsets including stem memory T cells (TSCM) in tumor-draining lymph nodes of patients with breast cancer (BC). Methods: Mononuclear cells were obtained from axillary lymph nodes of 52 untreated patients with BC and stained for CD8, CCR7, CD45RO, CD95 markers to detect different subtypes of memory cells in the CD8+ lymphocyte population. Data were acquired on four-color flow cytometer and analyzed with CellQuest Pro software. Results: We observed that 47.65±2.66% of CD8+ lymphocytes expressed the CD45RO, a marker for memory T cells. Statistical analysis showed that the total frequency of central memory T cells (TCM) and their subset with low CD45RO expression was significantly higher in tumor-involved nodes compared to tumor-free ones (P=0.024 and P=0.017, respectively). The level of CD95 expression (based on mean fluorescence intensity) on the surface of TCM, their CD45ROhi and CD45ROlow subsets, and TSCM was higher in patients with stage II compared to those in stage I (P<0.05). In addition, the percentage of naive CD8+ T cells was significantly lower in tumor-involved lymph nodes compared to tumor-free ones (P=0.025). Conclusions: Our data collectively indicate no significant differences in the frequencies of CD8+ lymphocytes or their memory subsets in tumor-draining lymph nodes of patients with BC. However, the frequency of CD45low TCM was higher in tumor-involved nodes. Along with a decrease in the frequency of naive T cells, the higher frequency of CD45low TCM suggests that despite the immune reaction to provide a pool of effective memory cells, it is blocked in early-stage of memory cells’ differentiation (CD45ROlow), probably by tumor-derived suppressive factors. Identifying the molecular and cellular mechanisms behind this suppression can provide invaluable tools for adoptive T cell therapies in cancer.


Blood ◽  
2008 ◽  
Vol 112 (3) ◽  
pp. 661-671 ◽  
Author(s):  
Sophie Laffont ◽  
Cyril Seillet ◽  
John Ortaldo ◽  
Jérôme D. Coudert ◽  
Jean-Charles Guéry

Abstract Natural killer (NK)–cell alloreactivity is exploited in bone marrow transplantation to improve clinical outcome. Likewise, in solid organ transplantation, it has been recently shown that recipient NK cells may limit alloreactive T-cell responses through their capacity to prevent the persistence of graft-derived allogeneic dendritic cells (DCs). In a model of CD4+ T cell–mediated allogeneic skin graft rejection, we show that the absence of host NK-cell alloreactivity was characterized by enhanced expansion of alloreactive effector T lymphocytes, including Th2 cells, and massive eosinophilic infiltrates in the rejected tissues. In CD8+ T cell–deficient C57BL/6 (H-2b) recipients injected with allogeneic BALB/c (H-2d) DCs, we demonstrated that NK cells expressing the H-2Dd-specific Ly49D activating receptor were implicated in the regulation of alloreactive CD4+ T-cell responses. Moreover, we showed that Ly49D+ CD127− NK cells were recruited within DC draining lymph nodes and rapidly eliminated allogeneic H-2d DCs through the perforin pathway. In normal mice, we further demonstrated that NK cells by quickly eliminating allogeneic DCs strongly inhibited alloreactive CD8+ T-cell responses. Thus, NK cells act as early regulators of alloreactive T-cell priming in allotransplantation through their capacity to kill allogeneic DCs in draining lymph nodes.


2020 ◽  
Author(s):  
Yasmin Vahidi ◽  
Mandana Bagheri ◽  
Abbas Ghaderi ◽  
Zahra Faghih

Abstract Background: Human immunological memory is a hallmark of the adaptive immune system and plays an important role in the development of effective immune responses against tumors. In the present study, we aimed to determine the frequencies of CD8 + memory T cell subsets including stem memory T cells (TSCM) in tumor-draining lymph nodes of patients with breast cancer (BC). Methods: Mononuclear cells were obtained from axillary lymph nodes of 52 untreated patients with BC and stained for CD8, CCR7, CD45RO, CD95 markers to detect different subtypes of memory cells in the CD8 + lymphocyte population. Data were acquired on four-color flow cytometer and analyzed with CellQuest Pro software. Results: We observed that 47.65±2.66% of CD8+ lymphocytes expressed the CD45RO, a marker for memory T cells. Statistical analysis showed that the total frequency of central memory T cells (TCM) and their subset with low CD45RO expression was significantly higher in tumor-involved nodes compared to tumor-free ones (P=0.024 and P=0.017, respectively). The level of CD95 expression (based on mean fluorescence intensity) on the surface of TCM, their CD45RO hi and CD45RO low subsets, and TSCM was higher in patients with stage II compared to those in stage I (P<0.05). In addition, the percentage of naive CD8 + T cells was significantly lower in tumor-involved lymph nodes compared to tumor-free ones (P=0.025). Conclusions: Our data collectively indicate no significant differences in the frequencies of CD8 + lymphocytes or their memory subsets in tumor-draining lymph nodes of patients with BC. However, the frequency of CD45 low TCM was higher in tumor-involved nodes. Along with a decrease in the frequency of naive T cells, the higher frequency of CD45 low TCM suggests that despite the immune reaction to provide a pool of effective memory cells, it is blocked in early-stage of memory cells’ differentiation (CD45RO low ), probably by tumor-derived suppressive factors. Identifying the molecular and cellular mechanisms behind this suppression can provide invaluable tools for adoptive T cell therapies in cancer.


2017 ◽  
Vol 114 (22) ◽  
pp. 5677-5682 ◽  
Author(s):  
Tommaso Torcellan ◽  
Henry R. Hampton ◽  
Jacqueline Bailey ◽  
Michio Tomura ◽  
Robert Brink ◽  
...  

Immune therapy is rapidly gaining prominence in the clinic as a major weapon against cancer. Whereas much attention has been focused on the infiltration of tumors by immune cells, the subsequent fate of these infiltrates remains largely unexplored. We therefore established a photoconversion-based model that allowed us to label tumor-infiltrating immune cells and follow their migration. Using this system, we identified a population of tumor-experienced cells that emigrate from primary tumors to draining lymph nodes via afferent lymphatic vessels. Although the majority of tumor-infiltrating cells were myeloid, T cells made up the largest population of tumor-egressing leukocytes. Strikingly, the subset composition of tumor-egressing T cells was greatly skewed compared with those that had infiltrated the tumor and those resident in the draining lymph node. Some T-cell subsets such as CD8+ T cells emigrated more readily; others including CD4−CD8− T cells were preferentially retained, suggesting that specific mechanisms guide immune cell egress from tumors. Furthermore, tumor-egressing T cells were more activated and displayed enhanced effector function in comparison with their lymph node counterparts. Finally, we demonstrated that tumor-infiltrating T cells migrate to distant secondary tumors and draining lymph nodes, highlighting a mechanism whereby tumor-experienced effector T cells may mediate antitumor immunity at metastatic sites. Thus, our results provide insights into migration and function of tumor-infiltrating immune cells and the role of these cells in tumor immunity outside of primary tumor deposits.


2019 ◽  
Author(s):  
Yasmin Vahidi ◽  
Mandana Bagheri ◽  
Abbas Ghaderi ◽  
Zahra Faghih

Abstract Background Human immunological memory is a hallmark of the adaptive immune system and plays an important role in the development of effective immune responses against tumors. In the present study, we aimed to determine the frequencies of CD8 + memory T cell subsets including stem memory T cells (TSCM) in tumor-draining lymph nodes of patients with breast cancer (BC).Methods Mononuclear cells were obtained from axillary lymph nodes of 52 untreated patients with BC and stained for CD8, CCR7, CD45RO, CD95 markers to detect different subtypes of memory cells in the CD8 + lymphocyte population. Data were acquired with four-color flow cytometry and analyzed with CellQuest Pro software.Results We observed that 47.65±2.66 of CD8+ lymphocytes expressed the CD45RO marker for memory T cells. Statistical analysis showed that the total frequency of central memory T cells (TCM) and their subset with low CD45RO expression was significantly higher in tumor-involved nodes compared to tumor-free ones (P=0.024 and P=0.017, respectively). Mean CD96 expression (based on mean fluorescence intensity) on the surface of TCM, their CD45RO hi TCM and CD45RO low subsets, and TSCM was higher in patients with stage II compared to those with stage I disease (P<0.05). The percentage of naive CD8 + T cells was significantly higher in tumor-involved lymph nodes compared to tumor-free ones (P=0.025).Conclusions Our data collectively indicate no significant differences in the frequencies of CD8 + lymphocytes or their memory T cell subsets in tumor-draining lymph nodes of patients with BC. However, the frequency of CD45 low TCM along with naive CD8 + lymphocytes was higher in tumor-involved nodes, which suggests that after long-term exposure to the antigen, and despite the immune reaction in order to provide a pool of effective memory cells, memory cell differentiation is blocked in early-stage (CD45RO low ) due to tumor-derived suppressive factors. Identifying the molecular and cellular mechanisms behind this suppression can provide invaluable tools for adoptive T cell therapies in cancer.


Blood ◽  
2006 ◽  
Vol 108 (7) ◽  
pp. 2257-2264 ◽  
Author(s):  
Sophie Laffont ◽  
Jérôme D. Coudert ◽  
Lucile Garidou ◽  
Laurent Delpy ◽  
Aurélie Wiedemann ◽  
...  

Abstract Accumulating evidence indicates that, in absence of CD8+ T-cell activation, CD4+ T-cell–mediated allograft rejection is associated with a dominant Th2-cell response and eosinophil infiltrates. In this study, we analyzed the mechanisms by which CD8+ T cells regulate alloreactive CD4+ T-cell priming and differentiation into interleukin 4 (IL-4)–producing cells. We showed that interferon γ (IFN-γ) production by CD8+ T cells was dispensable for the inhibition of Th2-cell development, as well as tissue eosinophilia and type 2 cytokine production in the rejected grafts. Since we noticed that CD8+ T cells not only suppressed Th2 differentiation, but also down-modulated the overall priming of alloreactive CD4+ T cells, we evaluated whether CD8+ T cells act by limiting the accumulation of donor-derived dendritic cells (DCs) in lymph nodes. We found that indeed, alloreactive CD8+ T cells rapidly eliminated allogeneic DCs from T-cell areas of draining lymph nodes, through a perforin-dependent mechanism. Thus, our data demonstrate that cytotoxic T lymphocyte (CTL)–mediated clearance of allogeneic DCs is a negative feedback mechanism that limits the duration of alloantigen presentation in draining lymph nodes, thereby modulating the amplitude and polarization of the primary alloreactive CD4+ T-cell responses.


2017 ◽  
Vol 3 (2) ◽  
pp. 00110-2016 ◽  
Author(s):  
Rieneke van de Ven ◽  
Anna-Larissa N. Niemeijer ◽  
Anita G.M. Stam ◽  
Sayed M.S. Hashemi ◽  
Christian G. Slockers ◽  
...  

The treatment of advanced nonsmall cell lung cancer (NSCLC) with PD-1/PD-L1 immune checkpoint inhibitors has improved clinical outcome for a proportion of patients. The current challenge is to find better biomarkers than PD-L1 immunohistochemistry (IHC) that will identify patients likely to benefit from this therapy. In this exploratory study we assessed the differences in T-cell subsets and PD-1 expression levels on T-cells in tumour-draining lymph nodes (TDLNs) and peripheral blood mononuclear cells (PBMCs).To evaluate this, flow cytometric analyses were performed on endobronchial ultrasound-guided (EBUS) fine-needle aspirates (FNA) from TDLNs of patients with NSCLC, and the results were compared to paired PBMC samples. For a select number of patients, we were also able to obtain cells from a non-TDLN (NTDLN) sample.Our data show that the frequency of PD-1+ CD4+ and CD8+ T-cells, as well as the PD-1 expression level on activated regulatory T (aTreg) and CD4+ and CD8+ T-cells, are higher in TDLNs than in PBMCs and, in a small sub-analysis, NTDLNs.These elevated PD-1 expression levels in TDLNs may reflect tumour-specific T-cell priming and conditioning, and may serve as a predictive or early-response biomarker during PD-1 checkpoint blockade.


2015 ◽  
Vol 34 (2) ◽  
pp. 639-647 ◽  
Author(s):  
YOSHIHIRO OKITA ◽  
MASAICHI OHIRA ◽  
HIROAKI TANAKA ◽  
MAO TOKUMOTO ◽  
YUKIE GO ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document