The Influence of Heavier Football Helmet Faceguards on Head Impact Location and Severity

2018 ◽  
Vol 28 (2) ◽  
pp. 106-110
Author(s):  
Julianne D. Schmidt ◽  
Tracy T. Phan ◽  
Ron W. Courson ◽  
Fred Reifsteck ◽  
Eric D. Merritt ◽  
...  
Neurology ◽  
2018 ◽  
Vol 91 (23 Supplement 1) ◽  
pp. S2.2-S2
Author(s):  
Mirellie Kelley ◽  
Jillian Urban ◽  
Derek Jones ◽  
Alexander Powers ◽  
Christopher T. Whitlow ◽  
...  

Approximately 1.1–1.9 million sport-related concussions among athletes ≤18 years of age occur annually in the United States, but there is limited understanding of the biomechanics and injury mechanisms associated with concussions among lower level football athletes. Therefore, the objective of this study was to combine biomechanical head impact data with video analysis to characterize youth and HS football concussion injury mechanisms. Head impact data were collected from athletes participating on 22 youth and 6 HS football teams between 2012 and 2017. Video was recorded, and head impact data were collected during all practices and games by instrumenting players with the Head Impact Telemetry (HIT) System. For each clinically diagnosed concussion, a video abstraction form was completed, which included questions concerning the context in which the injury occurred. Linear acceleration, rotational acceleration, and impact location were used to characterize the concussive event and each injured athlete's head impact exposure on the day of the concussion. A total of 9 (5 HS and 4 youth) concussions with biomechanics and video of the event were included in this study. The mean [range] linear and rotational acceleration of the concussive impacts were 62.9 [29.3–118.4] g and 3,056.7 [1,046.8–6,954.6] rad/s2, respectively. Concussive impacts were the highest magnitude impacts for 6 players and in the top quartile of impacts for 3 players on the day of injury. Concussions occurred in both practices (N = 4) and games (N = 5). The most common injury contact surface was helmet-to-helmet (N = 5), followed by helmet-to-ground (N = 3) and helmet-to-body (N = 1). All injuries occurred during player-to-player contact scenarios, including tackling (N = 4), blocking (N = 4), and collision with other players (N = 1). The biomechanics and injury mechanisms of concussions varied among athletes in our study; however, concussive impacts were among the highest severity for each player and all concussions occurred as a result of player-to-player contact.


Author(s):  
Jeffrey S. Brooks ◽  
Adam Redgrift ◽  
Allen A. Champagne ◽  
James P. Dickey

AbstractThis study sought to evaluate head accelerations in both players involved in a football collision. Players on two opposing Canadian university teams were equipped with helmet mounted sensors during one game per season, for two consecutive seasons. A total of 276 collisions between 58 instrumented players were identified via video and cross-referenced with sensor timestamps. Player involvement (striking and struck), impact type (block or tackle), head impact location (front, back, left and right), and play type were recorded from video footage. While struck players did not experience significantly different linear or rotational accelerations between any play types, striking players had the highest linear and rotational head accelerations during kickoff plays (p ≤ .03). Striking players also experienced greater linear and rotational head accelerations than struck players during kickoff plays (p = .001). However, struck players experienced greater linear and rotational accelerations than striking players during kick return plays (p ≤ .008). Other studies have established that the more severe the head impact, the greater risk for injury to the brain. This paper’s results highlight that kickoff play rule changes, as implemented in American college football, would decrease head impact exposure of Canadian university football athletes and make the game safer.


2017 ◽  
Vol 19 (6) ◽  
pp. 662-667 ◽  
Author(s):  
David M. O'Sullivan ◽  
Gabriel P. Fife

OBJECTIVEThe purpose of this study was to monitor head impact magnitude and characteristics, such as impact location and frequency, at high school taekwondo sparring sessions.METHODSEight male high school taekwondo athletes participated in this study. The head impact characteristics were recorded by X-Patch, a wireless accelerometer and gyroscope, during 6 taekwondo sparring sessions. The outcome measures were the peak linear acceleration (g = 9.81 msec2), peak rotational acceleration, rotational velocity, and Head Injury Criterion.RESULTSA total of 689 impacts occurred over 6 sessions involving the 8 athletes. There was an average of 24 impacts per 100 minutes, and there were significant differences in the frequency of impacts among both the sessions and individual athletes. In order of frequency, the most commonly hit locations were the side (38.2%), back (35.7%), and front (23.8%) of the head.CONCLUSIONSThe data indicate that there is a relatively high number of head impacts experienced by taekwondo athletes during sparring practice. According to the rotational acceleration predicting impact severity published in previous research, 17.1% of the impacts were deemed to be a moderate and 15.5% were deemed to be severe.


Neurology ◽  
2019 ◽  
Vol 93 (14 Supplement 1) ◽  
pp. S10.1-S10
Author(s):  
Adam Bartsch ◽  
Edward Benzel ◽  
Sergey Samorezov ◽  
Vincent Miele

ObjectiveThe aim of this study was to investigate head impact doses in American football. We analyzed time-synchronized video and data collected during n = 445 player-games of American football resulting in 2851video-verified impacts. Cases where a player sustained impacts and on video was demonstrably witnessed to meet the NFL’s “No-go” criteria were analyzed in-depth.BackgroundIn 2011, after reviewing scalar on-field kinematics data leading concussion clinicians concluded “Recent studies suggest that a concussive injury threshold is elusive, and may, in fact, be irrelevant when predicting the clinical outcome”.1 It is likely that higher fidelity estimates of spatial and temporal impact parameters will clarify the currently unclear impact dose-response relationship.Design/MethodsA total of 2851 video-verified head impacts were identified from 445 player-games. Each event was time-synchronized to video. Any events collected when the athlete was not being impacted in the head were discarded. The remaining true positive events were scrutinized based on published methods to confirm a head impact occurred in the video and the computed motion was physically realistic and matched the video.ResultsWe found a median of 5 video-verified head impacts per player-game, which is far fewer than published studies without video verification.11 For the four players with “No-go” impacts, all were to the side/rear. Coronal plane impact sensitivity has been a hypothesized clinical injury mechanism12 and our results support that hypothesis.ConclusionsWe did not see high PLA/PAA impacts without obvious player “No-go” observations. This finding disagrees with other studies that have reported high PLA/PAA impacts without any demonstrable “No-go” observations13. High energy impacts to the side and rear of the head are more damaging than similar magnitude impacts to the forehead. Armed with this knowledge, clinicians should have more fidelity in their understanding of real-time impact location and severity, and how it relates to athlete concussion risk.


2014 ◽  
Vol 136 (9) ◽  
Author(s):  
Ray W. Daniel ◽  
Steven Rowson ◽  
Stefan M. Duma

The head impact exposure experienced by football players at the college and high school levels has been well documented; however, there are limited data regarding youth football despite its dramatically larger population. The objective of this study was to investigate head impact exposure in middle school football. Impacts were monitored using a commercially available accelerometer array installed inside the helmets of 17 players aged 12–14 years. A total of 4678 impacts were measured, with an average (±standard deviation) of 275 ± 190 impacts per player. The average of impact distributions for each player had a median impact of 22 ± 2 g and 954 ± 122 rad/s2, and a 95th percentile impact of 54 ± 9 g and 2525 ± 450 rad/s2. Similar to the head impact exposure experienced by high school and collegiate players, these data show that middle school football players experience a greater number of head impacts during games than practices. There were no significant differences between median and 95th percentile head acceleration magnitudes experienced during games and practices; however, a larger number of impacts greater than 80 g occurred during games than during practices. Impacts to the front and back of the helmet were most common. Overall, these data are similar to high school and college data that have been collected using similar methods. These data have applications toward youth football helmet design, the development of strategies designed to limit head impact exposure, and child-specific brain injury criteria.


Author(s):  
Kenneth J. Saczalski ◽  
Mark N. West ◽  
Todd K. Saczalski ◽  
Joseph L. Burton ◽  
Mark C. Pozzi

The helmet is the primary means for providing head impact protection to adult and youth football players through use of energy absorbing (EA) materials placed in a crush zone located between the head and helmet shell. Ultimate safety performance of the helmet requires uniformly consistent, repeatable and reliable attenuation of the impact energy so as to minimize head injury potential throughout the helmet. However, quasi-static materials tests and dynamic helmet testing results, reported on herein, show that EA materials of current and older helmet designs are susceptible to large levels of EA degradation, or softening, when subjected to a “hot-wet” condition caused by high temperatures and high humidity, such as that produced from the sweat of a player. Depending on the size of the crush zone, and other factors, this condition can lead to increased head impact loads. The standard football helmet certification criteria do not address the issue of “hot-wet” EA degradation. Dynamic helmet testing analyzed in this study consisted of two methods. One method used the standard helmet certification approach where a human responding head form and helmet are dropped vertically, along a twin guide wire set-up, onto a soft rubber pad. The second method employed use of a human responding Hybrid-III head and neck that was incorporated into a free pendulum impact set-up where impact took place on a non-yielding surface and both direct contact impact injury potential and rotational injury aspects of the helmet performance were measured. The dynamic tests were conducted with various size head forms, energy levels, and impact speeds that ranged from the 5.5 m/s level, used in helmet certification, on up to higher speeds of 7.0 m/s that is more consistent with a “5-second 40-yard dash” speed. Based on equal kinetic energy impact comparisons, the two dynamic approaches showed that helmets that were impacted onto the soft elastomeric pad surface produced artificially lower indications of head injury severity than did the helmets tested against the non-yielding surface. The results also showed large variations and inconsistencies of impact attenuation within a specific helmet design, depending on impact location or region being tested. Also, dynamic impact testing was applied with both ambient and 3-hour “hot-wet” soak conditions applied to the EA padding of adult and youth helmets. These results showed that the relatively newer EA pad designs and the older type elastomeric foam EA pads were sensitive to “hot-wet” degradation for soak times as low as 3-hours, which is consistent with game or practice time situations. Finally, as noted above, it was shown that, depending on the size of the crush zone, this EA degradation factor could lead to increased head loads and injury severity measures. The results suggest the need for additional research on the above to enhance helmet safety.


2021 ◽  
pp. 1-10
Author(s):  
Tanner M. Filben ◽  
Nicholas S. Pritchard ◽  
Logan E. Miller ◽  
Sarah K. Woods ◽  
Megan E. Hayden ◽  
...  

Soccer players are regularly exposed to head impacts by intentionally heading the ball. Evidence suggests repetitive subconcussive head impacts may affect the brain, and females may be more vulnerable to brain injury than males. This study aimed to characterize head impact exposure among National Collegiate Athletic Association women’s soccer players using a previously validated mouthpiece-based sensor. Sixteen players were instrumented during 72 practices and 24 games. Head impact rate and rate of risk-weighted cumulative exposure were compared across session type and player position. Head kinematics were compared across session type, impact type, player position, impact location, and ball delivery method. Players experienced a mean (95% confidence interval) head impact rate of 0.468 (0.289 to 0.647) head impacts per hour, and exposure rates varied by session type and player position. Headers accounted for 89% of head impacts and were associated with higher linear accelerations and rotational accelerations than nonheader impacts. Headers in which the ball was delivered by a long kick had greater peak kinematics (all P < .001) than headers in which the ball was delivered by any other method. Results provide increased understanding of head impact frequency and magnitude in women’s collegiate soccer and may help inform efforts to prevent brain injury.


2012 ◽  
Vol 28 (2) ◽  
pp. 174-183 ◽  
Author(s):  
Joseph J. Crisco ◽  
Bethany J. Wilcox ◽  
Jason T. Machan ◽  
Thomas W. McAllister ◽  
Ann-Christine Duhaime ◽  
...  

The purpose of this study was to quantify the severity of head impacts sustained by individual collegiate football players and to investigate differences between impacts sustained during practice and game sessions, as well as by player position and impact location. Head impacts (N = 184,358) were analyzed for 254 collegiate players at three collegiate institutions. In practice, the 50th and 95th percentile values for individual players were 20.0 g and 49.5 g for peak linear acceleration, 1187 rad/s2 and 3147 rad/s2 for peak rotational acceleration, and 13.4 and 29.9 for HITsp, respectively. Only the 95th percentile HITsp increased significantly in games compared with practices (8.4%, p = .0002). Player position and impact location were the largest factors associated with differences in head impacts. Running backs consistently sustained the greatest impact magnitudes. Peak linear accelerations were greatest for impacts to the top of the helmet, whereas rotational accelerations were greatest for impacts to the front and back. The findings of this study provide essential data for future investigations that aim to establish the correlations between head impact exposure, acute brain injury, and long-term cognitive deficits.


Sign in / Sign up

Export Citation Format

Share Document