A comparative study of tissue factor and kaolin on blood coagulation assays using rotational thromboelastometry and thromboelastography

2016 ◽  
Vol 27 (1) ◽  
pp. 31-41 ◽  
Author(s):  
Henry T. Peng ◽  
Richard Grodecki ◽  
Sandro Rizoli ◽  
Pang N. Shek
Cells ◽  
2019 ◽  
Vol 8 (3) ◽  
pp. 258 ◽  
Author(s):  
Denis Silachev ◽  
Kirill Goryunov ◽  
Margarita Shpilyuk ◽  
Olga Beznoschenko ◽  
Natalya Morozova ◽  
...  

Mesenchymal stem cells (MSCs) have emerged as a potent therapeutic tool for the treatment of a number of pathologies, including immune pathologies. However, unwelcome effects of MSCs on blood coagulation have been reported, motivating us to explore the thrombotic properties of human MSCs from the umbilical cord. We revealed strong procoagulant effects of MSCs on human blood and platelet-free plasma using rotational thromboelastometry and thrombodynamic tests. A similar potentiation of clotting was demonstrated for MSC-derived extracellular vesicles (EVs). To offer approaches to avoid unwanted effects, we studied the impact of a heparin supplement on MSC procoagulative properties. However, MSCs still retained procoagulant activity toward blood from children receiving a therapeutic dose of unfractionated heparin. An analysis of the mechanisms responsible for the procoagulant effect of MSCs/EVs revealed the presence of tissue factor and other proteins involved in coagulation-associated pathways. Also, we found that some MSCs and EVs were positive for annexin V, which implies the presence of phosphatidylserine on their surfaces, which can potentiate clot formation. Thus, we revealed procoagulant activity of MSCs/EVs associated with the presence of phosphatidylserine and tissue factor, which requires further analysis to avoid adverse effects of MSC therapy in patients with a risk of thrombosis.


1974 ◽  
Vol 32 (01) ◽  
pp. 057-064 ◽  
Author(s):  
Y Nemerson ◽  
S.A Silverberg ◽  
J Jesty

SummaryTwo reactions of the extrinsic pathway of coagulation, the activations of Factor X and prothrombin, have been studied in purified systems and shown to be self-damping. Factor X was activated by the tissue factor - Factor VII complex, and prothrombin by two systems: the coagulant protein of Taipan venom, and the physiological complex of activated Factor X, Factor V, lipid, and calcium ions. In each case the yield of enzyme, activated Factor X or thrombin, is a function of the concentration of activator. These and other observations are considered as a basis for a control mechanism in coagulation.


2007 ◽  
Vol 92 (11) ◽  
pp. 4352-4358 ◽  
Author(s):  
Guenther Boden ◽  
Vijender R. Vaidyula ◽  
Carol Homko ◽  
Peter Cheung ◽  
A. Koneti Rao

Abstract Context: Type 2 diabetes mellitus (T2DM) is a hypercoagulable state. Tissue factor (TF) is the principal initiator of blood coagulation. Objective: Our objective was to examine the effects of hyperglycemia and hyperinsulinemia on the TF pathway of blood coagulation in T2DM. Design: Three study protocols were used: 1) acute correction of hyperglycemia (with iv insulin) followed by 24 h of euglycemia, 2) 24 h of selective hyperinsulinemia, and 3) 24 h of combined hyperinsulinemia and hyperglycemia. Setting: The study took place at a clinical research center. Study Participants: Participants included 18 T2DM patients and 22 nondiabetic controls. Results: Basal TF-procoagulant activity (TF-PCA), monocyte TF mRNA, plasma coagulation factor VII (FVIIc), and thrombin-anti-thrombin complexes were higher in T2DM than in nondiabetic controls, indicating a chronic procoagulant state. Acutely normalizing hyperglycemia over 2–4 h resulted in a small (∼7%) but significant decline in TF-PCA with no further decline over 24 h. Raising insulin levels alone raised TF-PCA by 30%, whereas raising insulin and glucose levels together increased TF-PCA (by 80%), thrombin-anti-thrombin complexes, and prothrombin fragment 1.2. Plasma FVIIa and FVIIc declined with increases in TF-PCA. Conclusion: We conclude that the combination of hyperglycemia and hyperinsulinemia, common in poorly controlled patients with T2DM, contributes to a procoagulant state that may predispose these patients to acute cardiovascular events.


Biomolecules ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 663
Author(s):  
Marek Z. Wojtukiewicz ◽  
Marta Mysliwiec ◽  
Elwira Matuszewska ◽  
Stanislaw Sulkowski ◽  
Lech Zimnoch ◽  
...  

Neoplastic processes are integrally related to disturbances in the mechanisms regulating hemostatic processes. Brain tumors, including gliomas, are neoplasms associated with a significantly increased risk of thromboembolic complications, affecting 20–30% of patients. As gliomas proliferate, they cause damage to the brain tissue and vascular structures, which leads to the release of procoagulant factors into the systemic circulation, and hence systemic activation of the blood coagulation system. Hypercoagulability in cancer patients may be, at least in part, a result of the inadequate activity of coagulation inhibitors. The aim of the study was to evaluate the expression of the inhibitors of the coagulation and fibrinolysis systems (tissue factor pathway inhibitor, TFPI; tissue factor pathway inhibitor-2 TFPI-2; protein C, PC; protein S, PS, thrombomodulin, TM; plasminogen activators inhibitor, PAI-1) in gliomas of varying degrees of malignancy. Immunohistochemical studies were performed on 40 gliomas, namely on 13 lower-grade (G2) gliomas (8 astrocytomas, 5 oligodendrogliomas) and 27 high-grade gliomas (G3–12 anaplastic astrocytomas, 4 anaplastic oligodendrogliomas; G4–11 glioblastomas). A strong expression of TFPI-2, PS, TM, PAI-1 was observed in lower-grade gliomas, while an intensive color immunohistochemical (IHC) reaction for the presence of TFPI antigens was detected in higher-grade gliomas. The presence of PC antigens was found in all gliomas. Prothrombin fragment 1+2 was observed in lower- and higher-grade gliomas reflecting local activation of blood coagulation. Differences in the expression of coagulation/fibrinolysis inhibitors in the tissues of gliomas with varying degrees of malignancy may be indicative of their altered role in gliomas, going beyond that of their functions in the hemostatic system.


2018 ◽  
Vol 172 ◽  
pp. 142-149 ◽  
Author(s):  
Tomoaki Oda ◽  
Naoaki Tamura ◽  
Yi Shen ◽  
Yukiko Kohmura-Kobayashi ◽  
Naomi Furuta-Isomura ◽  
...  

1995 ◽  
Vol 80 (2) ◽  
pp. 113-123 ◽  
Author(s):  
Masahiro Arai ◽  
Satoshi Mochida ◽  
Akihiko Ohno ◽  
Itsuro Ogata ◽  
Hiroya Obama ◽  
...  

Blood ◽  
2006 ◽  
Vol 107 (3) ◽  
pp. 980-986 ◽  
Author(s):  
Xin Huang ◽  
Wei-Qun Ding ◽  
Joshua L. Vaught ◽  
Roman F. Wolf ◽  
James H. Morrissey ◽  
...  

AbstractTissue factor (TF) initiates blood coagulation, but its expression in the vascular space requires a finite period of time. We hypothesized that targeting exogenous tissue factor to sites of vascular injury could lead to accelerated hemostasis. Since phosphatidylserine (PS) is exposed on activated cells at sites of vascular injury, we cloned the cDNA for a chimeric protein consisting of the extracellular domain of TF (called soluble TF or sTF) and annexin V, a human PS-binding protein. Both the sTF and annexin V domains had ligand-binding activities consistent with their native counterparts, and the chimera accelerated factor X activation by factor VIIa. The chimera exhibited biphasic effects upon blood coagulation. At low concentrations it accelerated blood coagulation, while at higher concentrations it acted as an anticoagulant. The chimera accelerated coagulation in the presence of either unfractionated or low-molecular-weight heparins more potently than factor VIIa and shortened the bleeding time of mice treated with enoxaparin. The sTF-annexin V chimera is a targeted procoagulant protein that may be useful in accelerating thrombin generation where PS is exposed to the vasculature, such as may occur at sites of vascular injury or within the vasculature of tumors.


Sign in / Sign up

Export Citation Format

Share Document