The effect of surgical fecal stream diversion of the healthy colon on the colonic microbiota

2019 ◽  
Vol 31 (4) ◽  
pp. 451-457
Author(s):  
Wouter B. van der Sluis ◽  
Mark-Bram Bouman ◽  
Margriet G. Mullender ◽  
Malieka C. Degen ◽  
Paul H.M. Savelkoul ◽  
...  
2007 ◽  
Vol 30 (4) ◽  
pp. 93
Author(s):  
I Sekirov ◽  
N Tam ◽  
M Robertson ◽  
C Lupp ◽  
B Finlay

Background: During our lifetimes we develop a very complex set of interactions with the multitude of microorganisms colonizing our bodies. In the gastrointestinal system, the microbiota is highly important for morphological development, nutrition, and protection against infectious diseases. The gastrointestinal pathogens, enterohemorrhagic and enteropathogenic Escherichia coli (EHEC and EPEC) and Salmonella enterica serovar Typhimurium (ST) are food-borne pathogens that cause much morbidity and mortality worldwide. Citrobacter rodentium (Cr) is a mouse pathogen that is used in small animal models to mimic EHEC and EPEC infections. Methods: We began to characterize the contribution of intestinal microbiota to the progression of these infections. Two main phyla comprise the majority of mouse intestinal microbiota: Bacteroidetes and Firmicutes. Bacteria from a number of additional phyla are also present in smaller numbers; among them γ-Proteobacteria class, belonging to Proteobacteria phylum, is note-worthy as this class harbours many intestinal pathogens, such as ST and Cr. The mouse intestinal microbiota was perturbed using tetracycline (Tet) and streptomycin (Sm) to increase the proportion of Bacteroidetes in the colonic microbiota, and using vancomycin (Vanc) to create a predominance of Firmicutes. The mice with this perturbed microbiota were infected with ST to investigate the resultant pathology and virulence characteristics, and any additional shifts in microbiota as a result of infection. Results: Treatment of mice with Sm and Vanc was found to decrease the resistance of mice to colonization with ST, while Tet-treated mice exhibited unchanged colonization resistance. Treatment of mice with gradually increasing doses of Sm, which gradually augmented the proportion of CFB bacteria in the microbiota, resulted in progressively increasing colonization of mice by ST, as well as a step-wise increase in the ST-induced typhlitis, associated with higher levels of inflammatory markers IL-6 and KC. The increasing levels of ST colonization following both Sm and Vanc treatment were associated with an increase in the proportion of γ-Proteobacteria in the cecal and colonic microbiota, as well as a decrease in the total bacterial numbers in both organs. Conclusions: It is evident that the intestinal microbiota plays a significant role in the host’s response to infection with enteric pathogens, and its composition and numbers are also affected by the offending bacteria. Elucidation of the details regarding the contribution of the microbiota to infectious disease progression will offer novel targets for the future design of superior prevention and treatment methods.


2020 ◽  
Vol 15 (1) ◽  
pp. 52-56
Author(s):  
Sri Winarti ◽  
Agung Pasetyo

The consumption of prebiotics is known to affect the balance of gut microbiota. The purpose of this study was to explore how a galactomannan-rich effervescent drink can affect the population of Lactobacillus, Bifidobacterium, E. coli, and the concentration of short-chain fatty acids in the cecum of rats. Twenty-eight male Wistar rats (aged 2 months) were divided equally into 7 groups and treated orally each day for 15 days with 2 mL effervescent drinks with increasing levels of prebiotic galactomannan. The dosage of 500 mg galactomannan increased the growth of Lactobacillus spp. and Bifidobacterium spp. with inhibition of the growth of E.coli with increased formation of short-chain fatty acids such as acetate, propionate, and butyrate in the cecum of rats.


Science ◽  
2018 ◽  
Vol 362 (6418) ◽  
pp. eaat9076 ◽  
Author(s):  
Yael Litvak ◽  
Mariana X. Byndloss ◽  
Andreas J. Bäumler

An imbalance in the colonic microbiota might underlie many human diseases, but the mechanisms that maintain homeostasis remain elusive. Recent insights suggest that colonocyte metabolism functions as a control switch, mediating a shift between homeostatic and dysbiotic communities. During homeostasis, colonocyte metabolism is directed toward oxidative phosphorylation, resulting in high epithelial oxygen consumption. The consequent epithelial hypoxia helps to maintain a microbial community dominated by obligate anaerobic bacteria, which provide benefit by converting fiber into fermentation products absorbed by the host. Conditions that alter the metabolism of the colonic epithelium increase epithelial oxygenation, thereby driving an expansion of facultative anaerobic bacteria, a hallmark of dysbiosis in the colon. Enteric pathogens subvert colonocyte metabolism to escape niche protection conferred by the gut microbiota. The reverse strategy, a metabolic reprogramming to restore colonocyte hypoxia, represents a promising new therapeutic approach for rebalancing the colonic microbiota in a broad spectrum of human diseases.


2021 ◽  
Author(s):  
Maite Domínguez-Fernández ◽  
Iziar A. Ludwig ◽  
María-Paz De Peña ◽  
Concepción Cid

Heat treatment exerts a positive effect on the bioaccessibility of artichoke (poly)phenols after gastrointestinal digestion. In the first 2 h of fermentation, native (poly)phenols were readily degraded by an important microbial catabolic activity.


AMB Express ◽  
2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Bo Deng ◽  
Jie Wu ◽  
Xiaohui Li ◽  
Cheng Zhang ◽  
Xiaoming Men ◽  
...  

AbstractThe present study was conducted to investigate effects of Bacillus subtilis on growth performance, serum parameters, digestive enzymes, intestinal morphology, and colonic microbiota in piglets. A total of 72 piglets were weighed and randomly allotted into three treatments (four replication pens per treatment with six piglets/pen) for a 28-day experiment. The dietary treatments were as follows: basal diet (control group, CTR), basal diet supplementation with antibiotic (antibiotic group, ABT), and basal diet supplementation with 0.1% Bacillus subtilis (probiotic group, PBT). The average daily gain of body weight increased in both the ABT and PBT groups, and dietary antibiotics decreased the feed:gain ratio (F:G), as compared to the CTR group (P < 0.05). Both ABT and PBT piglets had increased serum triglycerides and lipase, amylase, maltase activities and villus height:crypt depth ratio (V/C) in ileum (P < 0.05). The PBT group also showed an increase in serum glucose and villus height in the ileum (P < 0.05). Dietary antibiotics increased Lactobacillus johnsonii, as compared to the CTR group, but decreased bacterial diversity and increased Escherichia coli, as compared to the PBT group (P < 0.05). Piglets dietary with B. subtilis modulated the microbiota by increasing the abundance of Firmicutes (L. johnsonii, L. reuteri) and decreasing the abundance of E. coli, as compared to the control group (P < 0.05). These results indicate that dietary of B. subtilis improves growth performance and intestinal health and can be a promising alternative to antibiotics in piglets diet.


2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Jie Xu ◽  
Rongying Xu ◽  
Menglan Jia ◽  
Yong Su ◽  
Weiyun Zhu

Abstract Background Dietary fibers are widely considered to be beneficial to health as they produce nutrients through gut microbial fermentation while facilitating weight management and boosting gut health. To date, the gene expression profiles of the carbohydrate active enzymes (CAZymes) that respond to different types of fibers (raw potato starch, RPS; inulin, INU; pectin, PEC) in the gut microbes of pigs are not well understood. Therefore, we investigated the functional response of colonic microbiota to different dietary fibers in pigs through metatranscriptomic analysis. Results The results showed that the microbial composition and CAZyme structure of the three experimental groups changed significantly compared with the control group (CON). Based on a comparative analysis with the control diet, RPS increased the abundance of Parabacteroides, Ruminococcus, Faecalibacterium and Alloprevotella but decreased Sutterella; INU increased the relative abundance of Fusobacterium and Rhodococcus but decreased Bacillus; and PEC increased the relative abundance of the Streptococcus and Bacteroidetes groups but decreased Clostridium, Clostridioides, Intestinibacter, Gemmiger, Muribaculum and Vibrio. The gene expression of CAZymes GH8, GH14, GH24, GH38, GT14, GT31, GT77 and GT91 downregulated but that of GH77, GH97, GT3, GT10 and GT27 upregulated in the RPS diet group; the gene expression of AA4, AA7, GH14, GH15, GH24, GH26, GH27, GH38, GH101, GT26, GT27 and GT38 downregulated in the INU group; and the gene expression of PL4, AA1, GT32, GH18, GH37, GH101 and GH112 downregulated but that of CE14, AA3, AA12, GH5, GH102 and GH103 upregulated in the PEC group. Compared with the RPS and INU groups, the composition of colonic microbiota in the PEC group exhibited more diverse changes with the variation of CAZymes and Streptococcus as the main contributor to CBM61, which greatly promoted the digestion of pectin. Conclusion The results of this exploratory study provided a comprehensive overview of the effects of different fibers on nutrient digestibility, gut microbiota and CAZymes in pig colon, which will furnish new insights into the impacts of the use of dietary fibers on animal and human health.


Sign in / Sign up

Export Citation Format

Share Document