scholarly journals Maternal and Breast Milk Influences on the Infant Gut Microbiome, Enteric Health and Growth Outcomes of Rhesus Monkeys

2019 ◽  
Vol 69 (3) ◽  
pp. 363-369 ◽  
Author(s):  
Danielle Nicole Rendina ◽  
Gabriele R. Lubach ◽  
Gregory J. Phillips ◽  
Mark Lyte ◽  
Christopher L. Coe
2022 ◽  
Vol 8 ◽  
Author(s):  
Yosuke Komatsu ◽  
Daiki Kumakura ◽  
Namiko Seto ◽  
Hirohisa Izumi ◽  
Yasuhiro Takeda ◽  
...  

Background: The gut microbiome and fecal metabolites of breastfed infants changes during lactation, and are influenced by breast milk components. This study aimed to investigate dynamic associations of milk components with the infant gut microbiome and fecal metabolites throughout the lactation period in a mother–infant model.Methods: One month after delivery, breast milk and subsequent infant feces were collected in a pair for 5 months from a mother and an exclusively breastfed infant. Composition of the fecal microbiome was determined with 16S rRNA sequencing. Low-molecular-weight metabolites, including human milk oligosaccharides (HMOs), and antibacterial proteins were measured in feces and milk using 1H NMR metabolomics and enzyme-linked immunosorbent assays. The association of milk bioactive components with the infant gut microbiome and fecal metabolites was determined with Python clustering and correlation analyses.Results: The HMOs in milk did not fluctuate throughout the lactation period. However, they began to disappear in infant feces at the beginning of month 4. Notably, at this time-point, a bifidobacterium species switching (from B. breve to B. longum subsp. infantis) occurred, accompanied by fluctuations in several metabolites including acetate and butyrate in infant feces.Conclusions: Milk bioactive components, such as HMOs, might play different roles in the exclusively breastfed infants depending on the lactation period.


2017 ◽  
Vol 171 (7) ◽  
pp. 647 ◽  
Author(s):  
Pia S. Pannaraj ◽  
Fan Li ◽  
Chiara Cerini ◽  
Jeffrey M. Bender ◽  
Shangxin Yang ◽  
...  

Gut Microbes ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 1951113
Author(s):  
Yan Hui ◽  
Birgitte Smith ◽  
Martin Steen Mortensen ◽  
Lukasz Krych ◽  
Søren J. Sørensen ◽  
...  

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Christophe Lay ◽  
Collins Wenhan Chu ◽  
Rikky Wenang Purbojati ◽  
Enzo Acerbi ◽  
Daniela I. Drautz-Moses ◽  
...  

Abstract Background The compromised gut microbiome that results from C-section birth has been hypothesized as a risk factor for the development of non-communicable diseases (NCD). In a double-blind randomized controlled study, 153 infants born by elective C-section received an infant formula supplemented with either synbiotic, prebiotics, or unsupplemented from birth until 4 months old. Vaginally born infants were included as a reference group. Stool samples were collected from day 3 till week 22. Multi-omics were deployed to investigate the impact of mode of delivery and nutrition on the development of the infant gut microbiome, and uncover putative biological mechanisms underlying the role of a compromised microbiome as a risk factor for NCD. Results As early as day 3, infants born vaginally presented a hypoxic and acidic gut environment characterized by an enrichment of strict anaerobes (Bifidobacteriaceae). Infants born by C-section presented the hallmark of a compromised microbiome driven by an enrichment of Enterobacteriaceae. This was associated with meta-omics signatures characteristic of a microbiome adapted to a more oxygen-rich gut environment, enriched with genes associated with reactive oxygen species metabolism and lipopolysaccharide biosynthesis, and depleted in genes involved in the metabolism of milk carbohydrates. The synbiotic formula modulated expression of microbial genes involved in (oligo)saccharide metabolism, which emulates the eco-physiological gut environment observed in vaginally born infants. The resulting hypoxic and acidic milieu prevented the establishment of a compromised microbiome. Conclusions This study deciphers the putative functional hallmarks of a compromised microbiome acquired during C-section birth, and the impact of nutrition that may counteract disturbed microbiome development. Trial registration The study was registered in the Dutch Trial Register (Number: 2838) on 4th April 2011.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Alexander L. Carlson ◽  
Kai Xia ◽  
M. Andrea Azcarate-Peril ◽  
Samuel P. Rosin ◽  
Jason P. Fine ◽  
...  

AbstractExperimental manipulation of gut microbes in animal models alters fear behavior and relevant neurocircuitry. In humans, the first year of life is a key period for brain development, the emergence of fearfulness, and the establishment of the gut microbiome. Variation in the infant gut microbiome has previously been linked to cognitive development, but its relationship with fear behavior and neurocircuitry is unknown. In this pilot study of 34 infants, we find that 1-year gut microbiome composition (Weighted Unifrac; lower abundance of Bacteroides, increased abundance of Veillonella, Dialister, and Clostridiales) is significantly associated with increased fear behavior during a non-social fear paradigm. Infants with increased richness and reduced evenness of the 1-month microbiome also display increased non-social fear. This study indicates associations of the human infant gut microbiome with fear behavior and possible relationships with fear-related brain structures on the basis of a small cohort. As such, it represents an important step in understanding the role of the gut microbiome in the development of human fear behaviors, but requires further validation with a larger number of participants.


2016 ◽  
Vol 8 (343) ◽  
pp. 343ra81-343ra81 ◽  
Author(s):  
Moran Yassour ◽  
Tommi Vatanen ◽  
Heli Siljander ◽  
Anu-Maaria Hämäläinen ◽  
Taina Härkönen ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Shanthi G. Parkar ◽  
Jovyn K. T. Frost ◽  
Doug Rosendale ◽  
Halina M. Stoklosinski ◽  
Carel M. H. Jobsis ◽  
...  

AbstractEight plant-based foods: oat flour and pureed apple, blackcurrant, carrot, gold- and green-fleshed kiwifruit, pumpkin, sweetcorn, were pre-digested and fermented with pooled inocula of weaning infants’ faecal bacteria in an in vitro hindgut model. Inulin and water were included as controls. The pre-digested foods were analysed for digestion-resistant fibre-derived sugar composition and standardised to the same total fibre concentration prior to fermentation. The food-microbiome interactions were then characterised by measuring microbial acid and gas metabolites, microbial glycosidase activity and determining microbiome structure. At the physiologically relevant time of 10 h of fermentation, the xyloglucan-rich apple and blackcurrant favoured a propiogenic metabolic and microbiome profile with no measurable gas production. Glucose-rich, xyloglucan-poor pumpkin caused the greatest increases in lactate and acetate (indicative of high fermentability) commensurate with increased bifidobacteria. Glucose-rich, xyloglucan-poor oats and sweetcorn, and arabinogalactan-rich carrot also increased lactate and acetate, and were more stimulatory of clostridial families, which are indicative of increased microbial diversity and gut and immune health. Inulin favoured a probiotic-driven consortium, while water supported a proteolytic microbiome. This study shows that the fibre-derived sugar composition of complementary foods may shape infant gut microbiome structure and metabolic activity, at least in vitro.


Sign in / Sign up

Export Citation Format

Share Document