scholarly journals Against the current: an inter-oceanic whale migration event

2005 ◽  
Vol 1 (4) ◽  
pp. 476-479 ◽  
Author(s):  
Cristina Pomilla ◽  
Howard C Rosenbaum

Humpback whales seasonally migrate long distances between tropical and polar regions. However, inter-oceanic exchange is rare and difficult to document. Using skin biopsy samples collected in the Indian Ocean and in the South Atlantic Ocean, and a genetic capture–recapture approach based on microsatellite genotyping, we were able to reveal the first direct genetic evidence of the inter-oceanic migration of a male humpback whale. This exceptional migration to wintering grounds of two different ocean basins questions traditional notions of fidelity to an ocean basin, and demonstrates how the behaviour of highly mobile species may be elucidated from combining genetics with long-term field studies. Our finding has implications for management of humpback whale populations, as well as for hypotheses concerning cultural transmission of behaviour.

Behaviour ◽  
1998 ◽  
Vol 135 (1) ◽  
pp. 1-27 ◽  
Author(s):  
David Helweg ◽  
Peter Jenkins ◽  
Douglas Cat ◽  
Robert McCauley ◽  
Claire Garrigue

AbstractEvery winter, (male) humpback whales (Megaptera novaeangliae) produce long complex songs. Song content is dynamic and singers incorporate changes as they occur, thus song is shared through cultural transmission. We compared songs recorded in winter migratory termini in Tonga, New Caledonia, Eastern Australia, and on migration paths off Eastern Australia and New Zealand, in the winter of 1994. Seven themes were shared by all regions, with an additional two themes shared by all but Tonga. Differences in regional variants were most pronounced between Tongan and Eastern Australian song. New Caledonian and Kaikouran song were more similar to songs from Eastern Australia rather than Tonga. These regional differences were stable across the season. The results suggest some migratory exchange among widely separate wintering regions of Area V, consistent with tag recovery data, but the time and location at which song sharing occurs remains speculative.


2018 ◽  
Vol 1 ◽  
pp. 205920431875702 ◽  
Author(s):  
Michael Mcloughlin ◽  
Luca Lamoni ◽  
Ellen C. Garland ◽  
Simon Ingram ◽  
Alexis Kirke ◽  
...  

Male humpback whales produce hierarchically structured songs, primarily during the breeding season. These songs gradually change over the course of the breeding season, and are generally population specific. However, instances have been recorded of more rapid song changes where the song of a population can be replaced by the song of an adjacent population. The mechanisms that drive these changes are not currently understood, and difficulties in tracking individual whales over long migratory routes mean field studies to understand these mechanisms are not feasible. In order to help understand the mechanisms that drive these song changes, we present here a spatially explicit agent-based model inspired by methods used in computer music research. We model the migratory patterns of humpback whales, a simple song learning and production method coupled with sound transmission loss, and how often singing occurs during these migratory cycles. This model is then extended to include learning biases that may be responsible for driving changes in the song, such as a bias towards novel song, production errors, and the coupling of novel song bias and production errors. While none of the methods showed population song replacement, our model shows that shared feeding grounds where conspecifics are able to mix provide key opportunities for cultural transmission, and that production errors facilitated gradually changing songs. Our results point towards other learning biases being necessary in order for population song replacement to occur.


2021 ◽  
Vol 8 ◽  
Author(s):  
Saskia C. Martin ◽  
Ana S. Aniceto ◽  
Heidi Ahonen ◽  
Geir Pedersen ◽  
Ulf Lindstrøm

Male humpback whales (Megaptera novaeangliae) are known to produce long complex sequences of structured vocalizations called song. Singing behavior has traditionally been associated with low latitude breeding grounds but is increasingly reported outside these areas. This study provides the first report of humpback whale songs in the subarctic waters of Northern Norway using a long-term bottom-moored hydrophone. Data processed included the months January–June 2018 and December 2018–January 2019. Out of 189 days with recordings, humpback whale singing was heard on 79 days. Singing was first detected beginning of January 2018 with a peak in February and was heard until mid-April. No singing activity was found during the summer months and was heard again in December 2018, continuing over January 2019. A total of 131 song sessions, including 35 full sessions, were identified throughout the study period. The longest and shortest complete sessions lasted 815 and 13 min, respectively. The results confirm that singing can be heard over several months in winter and spring on a high latitude feeding ground. This provides additional evidence to the growing literature that singing is not an explicit behavior confined to low latitude breeding grounds. The peak of song occurrence in February appears to coincide with the reproductive cycle of humpback whales. Finally, this study indicates that song occurrence on a subarctic feeding ground likely aids the cultural transmission for the North Atlantic humpback whale population.


2011 ◽  
Vol 21 (8) ◽  
pp. 687-691 ◽  
Author(s):  
Ellen C. Garland ◽  
Anne W. Goldizen ◽  
Melinda L. Rekdahl ◽  
Rochelle Constantine ◽  
Claire Garrigue ◽  
...  

2021 ◽  
Vol 13 (11) ◽  
pp. 2074
Author(s):  
Ryan R. Reisinger ◽  
Ari S. Friedlaender ◽  
Alexandre N. Zerbini ◽  
Daniel M. Palacios ◽  
Virginia Andrews-Goff ◽  
...  

Machine learning algorithms are often used to model and predict animal habitat selection—the relationships between animal occurrences and habitat characteristics. For broadly distributed species, habitat selection often varies among populations and regions; thus, it would seem preferable to fit region- or population-specific models of habitat selection for more accurate inference and prediction, rather than fitting large-scale models using pooled data. However, where the aim is to make range-wide predictions, including areas for which there are no existing data or models of habitat selection, how can regional models best be combined? We propose that ensemble approaches commonly used to combine different algorithms for a single region can be reframed, treating regional habitat selection models as the candidate models. By doing so, we can incorporate regional variation when fitting predictive models of animal habitat selection across large ranges. We test this approach using satellite telemetry data from 168 humpback whales across five geographic regions in the Southern Ocean. Using random forests, we fitted a large-scale model relating humpback whale locations, versus background locations, to 10 environmental covariates, and made a circumpolar prediction of humpback whale habitat selection. We also fitted five regional models, the predictions of which we used as input features for four ensemble approaches: an unweighted ensemble, an ensemble weighted by environmental similarity in each cell, stacked generalization, and a hybrid approach wherein the environmental covariates and regional predictions were used as input features in a new model. We tested the predictive performance of these approaches on an independent validation dataset of humpback whale sightings and whaling catches. These multiregional ensemble approaches resulted in models with higher predictive performance than the circumpolar naive model. These approaches can be used to incorporate regional variation in animal habitat selection when fitting range-wide predictive models using machine learning algorithms. This can yield more accurate predictions across regions or populations of animals that may show variation in habitat selection.


2014 ◽  
Vol 74 (1) ◽  
pp. 137-144 ◽  
Author(s):  
LL Wedekin ◽  
MR Rossi-Santos ◽  
C Baracho ◽  
AL Cypriano-Souza ◽  
PC Simões-Lopes

Oceanic waters are difficult to assess, and there are many gaps in knowledge regarding cetacean occurrence. To fill some of these gaps, this article provides important cetacean records obtained in the winter of 2010 during a dedicated expedition to collect visual and acoustic information in the Vitória-Trindade seamounts. We observed 19 groups of cetaceans along a 1300-km search trajectory, with six species being identified: the humpback whale (Megaptera novaeangliae, N = 9 groups), the fin whale (Balaenoptera physalus, N = 1), the Antarctic minke whale (Balaenoptera bonaerensis, N = 1), the rough-toothed dolphin (Steno bredanensis, N = 1), the bottlenose dolphin (Tursiops truncatus, N = 2), and the killer whale (Orcinus orca, N = 1). Most humpback whale groups (N = 7; 78%) were observed in the Vitória-Trindade seamounts, especially the mounts close to the Abrolhos Bank. Only one lone humpback whale was observed near Trindade Island after a search effort encompassing more than 520 km. From a total of 28 acoustic stations, humpback whale songs were only detected near the seamounts close to the Abrolhos Bank, where most groups of this species were visually detected (including a competitive group and groups with calves). The presence of humpback whales at the Trindade Island and surroundings is most likely occasional, with few sightings and low density. Finally, we observed a significant number of humpback whales along the seamounts close to the Abrolhos Bank, which may function as a breeding habitat for this species. We also added important records regarding the occurrence of cetaceans in these mounts and in the Western South Atlantic, including the endangered fin whale.


2021 ◽  
Author(s):  
An Ning ◽  
Ling Liu ◽  
Lin Ji ◽  
Xiuhui Zhang

Abstract. Both iodic acid (HIO3, IA) and methanesulfonic acid (CH3S(O)2OH, MSA) have been identified by field studies as important precursors of new particle formation (NPF) in marine areas. However, the mechanism of NPF in which IA and MSA are jointly involved is still unclear. Hence, we investigated the IA-MSA nucleation system under different atmospheric conditions and uncovered the corresponding nucleating mechanism at a molecular level for the first time using quantum chemical approach and Atmospheric Cluster Dynamics Code (ACDC). The findings showed that MSA can stabilize IA clusters via both hydrogen and halogen bonds. Moreover, the joint nucleation rate of IA-MSA system is significantly higher than that of IA self-nucleation, particularly in relatively cold marine regions with sparse IA and rich MSA. For the IA-MSA nucleation mechanism, in addition to self-nucleation of IA, the IA-MSA-involved clusters can also directly participate in the nucleation process, and their contribution is particularly prominent in the polar regions with rich MSA and sparse IA. The IA-MSA nucleation mechanism revealed in this work may help to elucidate some missing sources of marine NPF.


PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e5365 ◽  
Author(s):  
Michelle E.H. Fournet ◽  
Lauren Jacobsen ◽  
Christine M. Gabriele ◽  
David K. Mellinger ◽  
Holger Klinck

Background Humpback whales (Megaptera novaeangliae) are a widespread, vocal baleen whale best known for producing song, a complex, repetitive, geographically distinct acoustic signal sung by males, predominantly in a breeding context. Humpback whales worldwide also produce non-song vocalizations (“calls”) throughout their migratory range, some of which are stable across generations. Methods We looked for evidence that temporally stable call types are shared by two allopatric humpback whale populations while on their northern hemisphere foraging grounds in order to test the hypothesis that some calls, in strong contrast to song, are innate within the humpback whale acoustic repertoire. Results Despite being geographically and genetically distinct populations, humpback whales in Southeast Alaska (North Pacific Ocean) share at least five call types with conspecifics in Massachusetts Bay (North Atlantic Ocean). Discussion This study is the first to identify call types shared by allopatric populations, and provides evidence that some call types may be innate.


2020 ◽  
pp. 95-99
Author(s):  
Judith Allen ◽  
Carole Carlson ◽  
Peter T. Stevick

The Antarctic Humpback Whale Catalogue (AHWC) is an international collaborative project investigating movement patterns of humpback whales in the Southern Ocean and corresponding lower latitude waters. The collection contains records contributed by 261 researchers and opportunistic sources. Photographs come from all of the Antarctic management areas, the feeding grounds in southern Chile and also most of the known or suspected low-latitude breeding areas and span more than two decades. This allows comparisons to be made over all of the major regions used by  Southern Hemisphere humpback whales. The fluke, left dorsal fin/flank and right dorsal fin/flank collections represent 3,655, 413 and 407 individual whales respectively. There were 194 individuals resighted in more than one year, and 82 individuals resighted in more than one region. Resightings document movement along the western coast of South America and movement between the Antarctic Peninsula and western coast of South America and Central America. A single individual from Brazil was resighted off South Georgia, representing the first documented link between the Brazilian breeding ground and any feeding area. A second individual from Brazil was resighted off Madagascar, documenting long distance movement of a female between non-adjacent breeding areas. Resightings also include two matches between American Samoa and the Antarctic Peninsula, documenting the first known feeding site for American Somoa and setting a new long distance seasonal migration record. Three matches between Sector V and eastern Australia support earlier evidence provided by Discovery tags. Multiple resightings of individuals in the Antarctic Peninsula during more than one season indicate that humpback whales in this area show some degree of regional feeding area fidelity. The AHWC provides a powerful non-lethal and non-invasive tool for investigating the movements and population structure of the whales utilising the Southern Ocean Sanctuary. Through this methodical, coordinated comparison and maintenance of collections from across the hemisphere, large-scale movement patterns may be examined, both within the Antarctic, and from the Antarctic to breeding grounds at low latitudes.


Sign in / Sign up

Export Citation Format

Share Document