scholarly journals Morphological responses of a stream fish to water impoundment

2010 ◽  
Vol 6 (6) ◽  
pp. 803-806 ◽  
Author(s):  
Travis C. Haas ◽  
Michael J. Blum ◽  
David C. Heins

Water impoundment imposes fundamental changes on natural landscapes by transforming rivers into reservoirs. The dramatic shift in physical conditions accompanying the loss of flow creates novel ecological and evolutionary challenges for native species. In this study, we compared the body shape of Cyprinella venusta collected from eight pairs of river and reservoir sites across the Mobile River Basin (USA). Geometric morphometric analysis of the body shape showed that river populations differ from reservoir populations. Individuals inhabiting reservoirs are deep-bodied and have a smaller head, a more anterior dorsal fin, a shorter dorsal fin base and a more ventral position of the eye than C. venusta in streams. The direction of shape divergence within reservoir–river pairs was consistent among pairs of sites, and the shape of C. venusta in reservoirs is strongly correlated with reservoir size. These findings show that physical characteristics of reservoirs drive changes in the morphological attributes of native fish populations, indicating that water impoundment may be an important, yet largely unrecognized, evolutionary driver acting on aquatic biodiversity.

2013 ◽  
Vol 63 (2) ◽  
pp. 217-232 ◽  
Author(s):  
Rosalía Aguilar-Medrano

Chromis is a circumglobal tropical and temperate genus with over 84 species of damselfishes. Studies based in osteological and molecular data have cited the relationship between Azurina and Chromis in the eastern Pacific. The main objectives of the study are: (1) to characterize size and shape in all Chromis and Azurina species of the eastern Pacific, (2) explore the phylogenetic signal of external morphology, and (3) present a hypothesis of the diversification process of this group. According to the results, there is no significant relationship between size and shape. The variation in body shape among all species is related to the height of the trunk, position of the snout and eye, and length of the caudal peduncle. The main morphologic variation between Azurina and Chromis is the degree of elongation of the body. Both Azurina species are closely related to C. punctipinnis and C. atrilobata. The morphological pattern of Azurina integrated it into Chromis. The phylogenetic pattern found by geometric morphometric analyses presented a high similarity with previous results based on molecular data. Phylogeny recovered two main clades, slender-bodied and deep-bodied species. This pattern of morphometric variation is closely related to exploitation of two different reef environments.


Zootaxa ◽  
2008 ◽  
Vol 1760 (1) ◽  
pp. 37 ◽  
Author(s):  
JEFFREY M LEIS

The larvae of the two species of Pinjalo are described for the first time based on seven specimens of P. pinjalo (4.3–7.5 mm) and 23 specimens of P. lewisi (5.6–15.0 mm) captured in plankton tows and midwater trawls in the eastern Indian and western Pacific Oceans. Identification was confirmed by fin meristics. These deep-bodied, compressed larvae share all the characteristics of lutjanid larvae, and have some of the most well-developed head spination and fin spines of any lutjanids. The robust spines of the dorsal, anal and pelvic fins bear strong serrations. The preopercular spines are particularly enlarged, some bear fine serrations, and the anterior end of the maxilla also has fine serrations: these fine serrations are rare in lutjanine lutjanids. The two species of Pinjalo can be distinguished by the meristics of dorsal and anal fins, the relative lengths of the first spine of the dorsal fin and the spine of the pelvic fin. The larvae have distinctive pigment on the dorsal fin, head and caudal peduncle. The body shape, pigment pattern, fin-spine morphology, and the fine serrations on the head spines of the two Pinjalo species are very similar to the larvae of Lutjanus erythropterus and L. malabaricus, and may indicate a close relationship among these four species.


2021 ◽  
Vol 82 (1) ◽  
Author(s):  
Tarek G. Ismail

Abstract Background Isopods shape features are sensitive and respond to several selective pressures which may result in variations of these features. These pressures might reflect the heterogeneity of the environment where an animal lives. Land isopods Porcellionides pruinosus were collected from an agricultural field. Landmarks geometric morphometrics was applied to evaluate its shape changes during two different seasons. The present work aims to (i) assess and characterize morphological changes in body shape of P. pruinosus as a response to seasonal variations, (ii) determine differences in the body shape during ontogeny, (iii) examine the effect of intraspecific allometry to interpret the observed variations in the species, and (iv) clarify whether the body shape of P. pruinosus can be used as a sexual differentiating trait. Results Juveniles showed no seasonal variations in the body shape, which were detected among adults, females and males as shown by PCA, DFA, and MANOVA. The adult winter forms have large bodies, small heads, broad pereons, and short but wide telsons. The adult summer forms have small slender bodies, slightly stretched heads, and relatively long telsons. Juveniles’ growth to adulthood showed body shape changes in the head and pereon, that include shrank of the head in the anteroposterior direction and its level became slightly lower than the body. The pereon becomes broader and the two anterolateral projections of the first pereonite extend anteriorly, reaching a little beyond the posterior margin of the eyes. Present species showed a shape sexual dimorphism which includes the broader body and more convex pereon in females and a small waist between the second and third pleonites in males. Shape sexual dimorphism was attributed to reproductive activity. Both allometric trajectories of juveniles and adults (ontogenetic allometry) and of sexes (static allometry) were parallel. Conclusions The landmark geometric morphometric technique was able to reveal the seasonal shape variations in terrestrial isopod P. pruinosus. Also, this method provides information about shape variations between juveniles and adults, as well as about shape sexual dimorphism.


2020 ◽  
Author(s):  
Jaimie Krems ◽  
Steven L. Neuberg

Heavier bodies—particularly female bodies—are stigmatized. Such fat stigma is pervasive, painful to experience, and may even facilitate weight gain, thereby perpetuating the obesity-stigma cycle. Leveraging research on functionally distinct forms of fat (deposited on different parts of the body), we propose that body shape plays an important but largely underappreciated role in fat stigma, above and beyond fat amount. Across three samples varying in participant ethnicity (White and Black Americans) and nation (U.S., India), patterns of fat stigma reveal that, as hypothesized, participants differently stigmatized equally-overweight or -obese female targets as a function of target shape, sometimes even more strongly stigmatizing targets with less rather than more body mass. Such findings suggest value in updating our understanding of fat stigma to include body shape and in querying a predominating, but often implicit, theoretical assumption that people simply view all fat as bad (and more fat as worse).


Author(s):  
Johan Roenby ◽  
Hassan Aref

The model of body–vortex interactions, where the fluid flow is planar, ideal and unbounded, and the vortex is a point vortex, is studied. The body may have a constant circulation around it. The governing equations for the general case of a freely moving body of arbitrary shape and mass density and an arbitrary number of point vortices are presented. The case of a body and a single vortex is then investigated numerically in detail. In this paper, the body is a homogeneous, elliptical cylinder. For large body–vortex separations, the system behaves much like a vortex pair regardless of body shape. The case of a circle is integrable. As the body is made slightly elliptic, a chaotic region grows from an unstable relative equilibrium of the circle-vortex case. The case of a cylindrical body of any shape moving in fluid otherwise at rest is also integrable. A second transition to chaos arises from the limit between rocking and tumbling motion of the body known in this case. In both instances, the chaos may be detected both in the body motion and in the vortex motion. The effect of increasing body mass at a fixed body shape is to damp the chaos.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mark Hermes ◽  
Mitul Luhar

AbstractIntertidal sea stars often function in environments with extreme hydrodynamic loads that can compromise their ability to remain attached to surfaces. While behavioral responses such as burrowing into sand or sheltering in rock crevices can help minimize hydrodynamic loads, previous work shows that sea stars also alter body shape in response to flow conditions. This morphological plasticity suggests that sea star body shape may play an important hydrodynamic role. In this study, we measured the fluid forces acting on surface-mounted sea star and spherical dome models in water channel tests. All sea star models created downforce, i.e., the fluid pushed the body towards the surface. In contrast, the spherical dome generated lift. We also used Particle Image Velocimetry (PIV) to measure the midplane flow field around the models. Control volume analyses based on the PIV data show that downforce arises because the sea star bodies serve as ramps that divert fluid away from the surface. These observations are further rationalized using force predictions and flow visualizations from numerical simulations. The discovery of downforce generation could explain why sea stars are shaped as they are: the pentaradial geometry aids attachment to surfaces in the presence of high hydrodynamic loads.


2019 ◽  
Vol 2019 ◽  
pp. 1-8 ◽  
Author(s):  
Renan Rodrigues Rocha ◽  
Rosana de Mesquita Alves ◽  
Rubens Pasa ◽  
Karine Frehner Kavalco

The Astyanax scabripinnis complex is composed of a large number of almost morphological indistinguishable species, including Astyanax paranae and Astyanax rivularis, which exist in the Paraná and São Francisco Basins, respectively, and sometimes are considered subspecies of the A. scabripinnis group or even are cited just as A. scabripinnis. The two river basins are separated by the Upper Paranaíba Arc, likely the main cause of the isolation of these species. We used geometric morphometric tools and DNA analyses of populations of both species to identify the differences between them. Geometric morphometrics separated the two species into distinct groups, whose main difference was the body depth. This is generally related to the speed of the water flow in the river basins. The maximum likelihood phylogram based on mitochondrial DNA sequences formed two main clades: one composed of the population of A. rivularis and the other, of A. paranae. In the haplotype network, the species were similarly separated into two groups from the same ancestral haplotype, with A. rivularis dispersing into two lineages in the São Francisco River Basin. The distribution of A. paranae is a consequence of a secondary dispersion event in the Paraná River Basin. It forms two lineages from a haplotype derived from the ancestor. The vicariant effect of separate basins, through the elevation of the Upper Paranaíba Arc, led to the allopatric speciation of the populations originating the present species. The results of geometric morphometrics and molecular data of the fish show the importance of this geological event in the biogeography and evolutionary history of the ichthyofauna of the region and indicate that the isolation of these species seems to be effective.


Author(s):  
Peter J. Cooper ◽  
Melanie J. Taylor ◽  
Zafra Cooper ◽  
Christopher G. Fairbum

Sign in / Sign up

Export Citation Format

Share Document