scholarly journals Molecular cytogenetics of tragelaphine and alcelaphine interspecies hybrids: hybridization, introgression and speciation in some African antelope

2015 ◽  
Vol 11 (11) ◽  
pp. 20150707 ◽  
Author(s):  
T. J. Robinson ◽  
H. Cernohorska ◽  
E. Schulze ◽  
A. Duran-Puig

Hybridization can occur naturally among diverging lineages as part of the evolutionary process leading to complete reproductive isolation, or it can result from range shifts and habitat alteration through global warming and/or other anthropogenic influences. Here we report a molecular cytogenetic investigation of hybridization between taxonomically distinct species of the Alcelaphini ( Alcelaphus buselaphus 2 n = 40 × Damaliscus lunatus 2 n = 36) and the Tragelaphini ( Tragelaphus strepsiceros 2n = 31/32 × Tragelaphus angasii 2 n = 55/56). Cross-species fluorescence in situ hybridization provides unequivocal evidence of the scale of karyotypic difference distinguishing parental species. The findings suggest that although hybrid meiosis of the former cross would necessitate the formation of a chain of seven, a ring of four and one trivalent, the progeny follow Haldane's rule showing F 1 male sterility and female fertility. The tragelaphine F 1 hybrid, a male, was similarly sterile and, given the 11 trivalents and chain of five anticipated in its meiosis, not unexpectedly so. We discuss these findings within the context of the broader evolutionary significance of hybridization in African antelope, and reflect on what these hold for our views of antelope species and their conservation.

Genome ◽  
1998 ◽  
Vol 41 (3) ◽  
pp. 464-467 ◽  
Author(s):  
Andrew R Leitch ◽  
K Yoong Lim ◽  
Ilia J Leitch ◽  
Michelle O'Neill ◽  
MeeLen Chye ◽  
...  

This paper reports the start of a molecular cytogenetics programme targeting the genome of the angiosperm tree species Hevea brasiliensis Muell. Arg. (rubber, 2n = 36), a major world crop about whose genetics very little is known. A metaphase karyotype of rubber is presented. In situ hybidization with the probe pTa71 for ribosomal DNA (rDNA) shows that there are four sites of probe hybidization occurring on two pairs of chromosomes called chromosomes 6 and 7 carrying sites NOR-1 and NOR-2, respectively. An examination of meristematic interphase nuclei shows that all four loci have the potential to be partially decondensed at interphase, although in many nuclei one or more loci appear fully condensed and apparently inactive. The probe pXVI revealed a single pair of chromosomes carrying 5S rDNA. The probes pTa71 and pXVI provide cytogenetic markers for three pairs of chromosomes that will be of use in genetic mapping programmes. The rubber chromosomes also have telomere sequences that hybridize with the Arabidopsis consensus sequence TTTAGGG. With the exception of the satellite region containing rDNA, which fluoresces brightly with chromomycin A3, fluorescence banding showed that there is no strong demarcation of the genome into GC- and AT-rich regions, as occurs in mammalian genomes.Key words: rubber, Hevea, genetic mapping, cytogenetics, ribosomal DNA, rDNA fluorescence banding.


Author(s):  
Muhammad Sanusi Yahaya ◽  
Mohd Shahrom Salisi ◽  
Nur Mahiza Md. Isa ◽  
Abd Wahid Haron ◽  
Innocent Damudu Peter

Cytogenetics is the study of chromosomes; their structure and properties, chromosome behavior during cell division, their influence on traits and factors which cause changes in chromosomes.  Veterinary cytogenetics is the application of cytogenetics to clinical problems that occur in animal production. It has been applied to understand problems such as infertility and its types, embryonic and fetal death, abnormality in sexual and somatic development and hybrid sterility and also prenatal sex determination and other forms of chromosomal abnormalities. These are achieved through conventional and banded karyotyping techniques and molecular cytogenetic techniques. Although conventional techniques are still useful and very widely applied, the nature of cytogenetics has gradually changed as a result of advances achieved in the molecular cytogenetic techniques for example fluorescent in situ hybridization and array-based techniques. These changes are evident in both molecular diagnostics and basic research. The combination of conventional and molecular cytogenetics has given rise to high resolution techniques which have enabled the study of fundamental questions regarding biological processes. It enables the study of inherited syndromes, the mechanisms of tumorigenesis at molecular level, genome organization and the determination of chromosome homologies between species. It allows the ease with which animals are selected in breeding programs and other important aspects of animal production. In this paper we discussed a number of techniques employed in cytogenetics and their methodologies, and recommend where future focus should be for the benefits of animal production.


Genome ◽  
1997 ◽  
Vol 40 (1) ◽  
pp. 34-40 ◽  
Author(s):  
Yuanfu Ji ◽  
Dwaine A. Raska ◽  
M. Nurul Islam-Faridi ◽  
Charles F. Crane ◽  
Michael S. Zwick ◽  
...  

The extensive use of molecular cytogenetics in human genetics and clinical diagnostics indicates that analogous applications in plants are highly feasible. One sort of application would be the identification of new aneuploids, which traditionally involves either direct karyotypic identification, which is feasible in only a few plant species, or tests with markers (cytogenetic, genetic, or molecular), which require sexual hybridization and at least one subsequent seed or plant generation. We have used meiotic fluorescence in situ hybridization (FISH) to analyze a new monosome of cotton (Gossypium hirsutum L., 2n = 4x = 52, 2(AD)1) that had a phenotype which seemed to be distinct from monosomes in the Cotton Cytogenetic Collection. Painting with A2-genome DNA revealed the monosome's D-subgenome origin. DAPI–PI staining showed that the monosome carries a major NOR, delimiting it to the major NOR-bearing chromosomes of the D-subgenome, i.e., 16 or 23. Dual-color FISH with 5S and 18S–28S rDNAs indicated that the monosome contains separate major clusters of each of these two tandemly repeated rDNA elements, thus delimiting the monosome to chromosome 23, for which the Cotton Cytogenetic Collection has previously been devoid of any sort of deficiency. Of the 26 chromosomes in the cotton genome, the Collection now provides coverage for 16 (70%) in the form of monosomy, and 20 (77%) in the form of monosomy and (or) telosomy. Use of molecular cytogenetic methods to identify a new plant aneuploid in cotton exemplifies the fact that a physicochemical karyotypic chromosome identification system is not required a priori for application of new molecular cytogenetic methods, thus indicating their potential applicability to nearly all plant species.Key words: fluorescence in situ hybridization, monosome, aneuploid, Gossypium hirsutum.


2021 ◽  
Author(s):  
Yang Zhao ◽  
Honghong Deng ◽  
Yao Chen ◽  
Jihan Li ◽  
Silei Chen ◽  
...  

Abstract Background: Kiwifruit has long been regarded as ‘the king of fruits’ for its nutritional importance. However, the molecular cytogenetics of kiwifruit has long been hampered because of the large number of basic chromosome (x=29), the inherent small size and highly similar morphology of metaphase chromosomes. Fluorescence in situ hybridization (FISH) is an indispensable molecular cytogenetic technique widely used in many plant species. Herein, the effects of post-hybridization washing temperature on FISH, blocking DNA concentration on genomic in situ hybridization (GISH), extraction method on nuclei isolation and the incubation time on the DNA fiber quality in kiwifruit were evaluated.Results: The post-hybridization washing in 2×SSC solution for 3×5 min at 37 ˚C ensured high stringency and distinct specific FISH signals in kiwifruit somatic chromosomes. The use of 50× blocking DNA provided an efficient and reliable means of discriminating between chromosomes derived from in the hybrids of A. chinensis var. chinensis (2n=2x=58) × A. eriantha Benth (2n=2x=58), and inferring the participation of parental genitors. The chopping method established in the present study were found to be very suitable for preparation of leaf nuclei in kiwifruit. A high-quality linear DNA fiber was achieved by an incubation of 20 min. The physical size of 45S rDNA signals was approximately 35-40 μmm revealed by the highly reproducible fiber-FISH procedures established and optimized in this study.Conclusions: The molecular cytogenetic techniques (45S rDNA-FISH, GISH, and high-resolution fiber-FISH) for kiwifruit was for the first time established and optimized in the present study, which is the foundation for the future genomic and evolutionary studies.


Biologia ◽  
2007 ◽  
Vol 62 (3) ◽  
Author(s):  
Martina Lakatošová ◽  
Beáta Holečková

AbstractFluorescence in situ hybridisation (FISH) is a rapid and reliable technique for chromosomal investigations that is used for a wide variety of cytogenetic purposes at present. This molecular-cytogenetic method has been developed continuously for many years. As a consequence, various modifications with different kinds of fluorescently labelled probes have been introduced to optimise the detection of DNA and RNA sequences. This review articlepaper presents the general principles of in situ hybridisation, probe labelling and examples of proper use of different kinds of probes. In addition, some newer FISH methods and their usefulness in human molecular cytogenetics are described.


Diagnostics ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1457
Author(s):  
Tien-Yu Yao ◽  
Wan-Ju Wu ◽  
Kim-Seng Law ◽  
Mei-Hui Lee ◽  
Shun-Ping Chang ◽  
...  

This study examined the molecular characterization of a prenatal case with true fetal mosaicism of small supernumerary marker chromosome 16 (sSMC(16)). A 41-year-old female underwent amniocentesis at 19 weeks of gestation due to advanced maternal age. Chromosomal analysis for cultured amniocytes revealed a karyotype of 47,XY,+mar[4]/46,XY[16]. Spectral karyotyping and metaphase fluorescence in situ hybridization (FISH) demonstrated that the sSMC was derived from chromosome 16 (47,XY,+mar.ish der(16)(D16Z1+)[13/20]). Confined placental mosaicism was initially suspected because the prenatal ultrasound revealed a normal structure and the pregnancy was uneventful. However, interphase FISH of cord blood performed at 28 weeks of gestation showed 20% mosaicism of trisomy chromosome 16 (nuc ish(D16Z2×3)[40/200]). Chromosome microarray analysis further demonstrated 55% mosaicism of an 8.02 Mb segmental duplication at the subcentromeric region of 16p12.1p11.1 (arr[GRCh37] 16p12.1p11.1(27021975_35045499)×3[0.55]). The results demonstrated a true fetal mosaicism of sSMC(16) involving chromosome16p12.1p11.1 that is associated with chromosome 16p11.2 duplication syndrome (OMIM #614671). After non-directive genetic counseling, the couple opted for late termination of pregnancy. This case illustrated the use of multiple molecular cytogenetic tools to elucidate the origin and structure of sSMC, which is crucial for prenatal counseling, decision making, and clinical management.


2015 ◽  
Vol 89 (4) ◽  
pp. 665-694 ◽  
Author(s):  
Rachel H. Dunn ◽  
Kenneth D. Rose

AbstractSpecies-level diversity and evolution of Palaeosinopa from the Willwood Formation of the Bighorn Basin is reassessed based on substantial new material from the Bighorn, Powder River, and Wind River basins. We recognize three species of Palaeosinopa in the Willwood Formation of the Bighorn Basin: P. lutreola, P. incerta, and P. veterrima. The late Wasatchian species P. didelphoides is not present in the Bighorn Basin. The Willwood species can be differentiated based only on size. P. veterrima is the most common and wide-ranging species and is the most variable in size and morphology: the stratigraphically lowest individuals are smaller, with narrower, more crestiform lower molars; whereas the highest are larger, with wider, more bunodont teeth. Although it could be argued that these represent distinct species, we demonstrate that this morphological evolution occurred as the gradual and mosaic accumulation of features, suggesting in situ anagenetic evolution. The two smaller species are present only low in the section (biochrons Wa0–Wa4) and show no discernable evolution in size or morphology. A new skeleton of Palaeosinopa veterrima from the Willwood Formation is described, and other new postcrania are reported. The skeleton is the oldest associated skeleton of Palaeosinopa known, yet it is remarkably similar to those of younger, more derived pantolestids, the primary disparities being minor differences in proportions of the innominate, femur, and tibia, and co-ossification of the distal tibia and fibula. Either P. incerta or P. lutreola was likely the ancestral population that gave rise to the other Wasatchian Palaeosinopa. Alternatively, P. veterrima may have migrated into the Bighorn Basin from the Powder River Basin.


Animals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 2106
Author(s):  
Barbara Kij-Mitka ◽  
Halina Cernohorska ◽  
Svatava Kubickova ◽  
Sylwia Prochowska ◽  
Wojciech Niżański ◽  
...  

Fluorescence in situ hybridization is a molecular cytogenetics technique that enables the visualization of chromosomes in cells via fluorescently labeled molecular probes specific to selected chromosomes. Despite difficulties in carrying out the FISH technique on sperm, related to the need for proper nuclear chromatin decondensation, this technique has already been used to visualize chromosomes in human, mouse, cattle, swine, horse, and dog spermatozoa. Until now, FISH has not been performed on domestic cat sperm; therefore, the aim of this study was to visualize sex chromosomes in domestic cat sperm. The results showed the presence of X and Y chromosomes in feline spermatozoa. The procedure used for sperm decondensation and fluorescence in situ hybridization was adequate to visualize chromosomes in domestic cat spermatozoa and, in the future, it may be used to determine the degree of chromosomal abnormalities in these gametes.


Sign in / Sign up

Export Citation Format

Share Document