scholarly journals Increased nitrogen input enhances Kandelia obovata seedling growth in the presence of invasive Spartina alterniflora in subtropical regions of China

2017 ◽  
Vol 13 (1) ◽  
pp. 20160760 ◽  
Author(s):  
Xiaowei Cui ◽  
Weimin Song ◽  
Jianxiang Feng ◽  
Dai Jia ◽  
Jiemin Guo ◽  
...  

Mangroves in China are severely affected by the rapid invasion of the non-native species Spartina alterniflora . Although many studies have addressed the possible impacts of S. alterniflora on the performance of mangrove seedlings, how excessive nitrogen (N) input due to eutrophication affects the interactions between mangrove species and S. alterniflora remains unknown. Here, we report the results from a mesocosm experiment using seedlings of the native mangrove species Kandelia obovata and the exotic S. alterniflora grown in monoculture and mixed culture under no nitrogen addition and nitrogen (N) addition treatments for 18 months. Without N addition, the presence of S. alterniflora inhibited the growth of K. obovata seedlings. Excessive N addition significantly increased the growth rate of K. obovata in both cultures. However, the positive and significantly increasing relative interaction intensity index under excessive N input suggested that the invasion of S. alterniflora could favour the growth of K. obovata under eutrophication conditions. Our results imply that excessive N input in southeastern China can increase the competitive ability of mangrove seedlings against invasive S. alterniflora .

2019 ◽  
Author(s):  
Tianpeng Li ◽  
Heyong Liu ◽  
Ruzhen Wang ◽  
Xiao-Tao Lü ◽  
Junjie Yang ◽  
...  

Abstract. Sulfur (S) availability plays a vital role in driving functions of terrestrial ecosystems, which can be largely affected by soil inorganic S fractions and pool size. Enhanced ecosystem nitrogen (N) input can significantly affect soil S availability, but it still remains largely unknown if the N effect varies with frequency of N addition and mowing management in grasslands. To investigate changes in soil S pool and inorganic S fractions (water-soluble S, adsorbed S, available S, and insoluble S), we conducted a field experiment with different frequencies (twice vs. monthly additions per year) and intensities (i.e. 0, 1, 2, 3, 5, 10, 15, 20, and 50 g N m−2 year−1) of NH4NO3 addition and mowing (unmowing vs. mowing) over six years in a temperate grassland of northern China. Soil water-soluble and adsorbed S concentrations significantly increased, while insoluble S decreased with increasing intensity of N input. Such changes were correlated with soil pH and total inorganic nitrogen (TIN) concentration. High frequency of N addition increased the concentrations of water-soluble S, adsorbed S and available S as compared to low frequency of N addition in mown plots. Mowing significantly decreased all soil inorganic S fractions by reducing S replenishment via plant residue return. Mowing significantly interacted with both N addition intensity and frequency to affect inorganic S fractions, in that adsorbed S and available S showed no response to N addition intensity in unmown plots but significantly increased in mown plots under high N frequency. Mowing interacted with N addition intensity to decrease soil S pool size, suggesting that biomass removal under N input would cause soil S depletion in this temperate grassland. Nitrogen addition could replenish soil available S by promoting dissolution of soil insoluble S with decreasing soil pH and mineralization of organic S due to increasing plant S uptake. Our results further indicated that using large and infrequent N addition to simulate N deposition can overestimate the main effects of N deposition and mowing on soil S availability in semi-arid grasslands.


2021 ◽  
Vol 11 ◽  
Author(s):  
Jianhua Zhang ◽  
He Li ◽  
Hufang Zhang ◽  
Hong Zhang ◽  
Zhiyao Tang

Plant litter decomposition is a crucial ecosystem process that regulates nutrient cycling, soil fertility, and plant productivity and is strongly influenced by increased nitrogen (N) deposition. However, the effects of exogenous N input on litter decomposition are still poorly understood, especially in temperate shrublands, which hinders predictions of soil C and nutrient dynamics under the context of global change. Temperate shrub ecosystems are usually N-limited and particularly sensitive to changes in exogenous N input. To investigate the responses of Vitex negundo and Spiraea trilobata litter decomposition to N addition, we conducted a field experiment in Vitex- and Spiraea-dominated shrublands located on Mt. Dongling in Beijing, North China. Four N treatment levels were applied: control (N0; no N addition), low N (N1; 20 kg⋅N⋅ha–1⋅year–1), moderate N (N2; 50 kg⋅N⋅ha–1⋅year–1), and high N (N3; 100 kg⋅N⋅ha–1⋅year–1). The litter decomposition in V. negundo was faster than that in S. trilobata, which may be due to the differences in their nutrient content and C/N ratio. N addition increased the amount of remaining N in the two litter types but had no effect on the remaining mass, C, or P. Nitrogen treatment did not affect the litter decomposition rates (k) of either litter type; i.e., N addition had no effect on litter decomposition in temperate shrublands. The neutral effect of N addition on litter decomposition may be primarily explained by the low temperatures and P limitation at the site as well as the opposing effects of the exogenous inorganic N, whereby exogenous N inhibits lignin degradation but promotes the decomposition of readily decomposed litter components. These results suggest that short-term N deposition may have a significant impact on N cycling but not C or P cycling in such shrub ecosystems.


2021 ◽  
Vol 9 (8) ◽  
pp. 788
Author(s):  
Qiuxuan Wang ◽  
Carlos Duarte ◽  
Li Song ◽  
George Christakos ◽  
Susana Agusti ◽  
...  

Spartina alterniflora has extensively invaded the coastline of China, including in Maoyan Island of Zhejiang Province. Ecological restoration has been conducted using non-native mangrove Kandelia obovata to replace S. alterniflora in an attempt to restore the impacted intertidal zones. To illustrate the ecological effectiveness of the restoration projects, macrobenthos communities were studied among different habitats within the restored areas, including one non-restored S. alterniflora marsh (SA) and three differently-aged restored K. obovata stands planted in 2003, 2009, and 2011 respectively (KF14, KF8, and KF6). Besides, one unvegetated mudflat (MF) adjacent to the non-restored S. alterniflora marsh and one K. obovata forest transplanted in 2006 (RKF) at a previously barren mudflat without invasion history of S. alterniflora were set as reference sites. A total of 69 species of macrobenthos were collected from Maoyan Island, and the species richness was dominated by gastropoda (23 species), polychaeta (18 species), and malacostraca (16 species). There was no significant difference between the six sites in terms of the abundance of macrobenthos, with the average values of abundance peaking in KF6 (734.7 ind m−2) and being lowest in RKF (341.3 ind m−2). The six sites had significant differences in terms of the biomass of macrobenthos. The KF8 site contained the highest average biomass (168.3 g m−2), whereas the MF site had the lowest (54.3 g m−2). The Shannon-Wiener diversity index and Pielou’s evenness index of the macrobenthos did not exhibit significant differences among the six sites. However, the results of permutational multivariate analysis of variance (PERMANOVA) revealed significant spatial differences in the macrobenthos community structure between the sites. Since KF14 shared a similar macrobenthos community structure with RKF, while representing a strikingly different structure from SA, we infer that ecological restoration using K. obovata can restore the macrobenthos community to resemble to a normally planted K. obovata forest about 15 years after restoration.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Quan Li ◽  
Changhui Peng ◽  
Junbo Zhang ◽  
Yongfu Li ◽  
Xinzhang Song

AbstractForest soils play an important role in controlling global warming by reducing atmospheric methane (CH4) concentrations. However, little attention has been paid to how nitrogen (N) deposition may alter microorganism communities that are related to the CH4 cycle or CH4 oxidation in subtropical forest soils. We investigated the effects of N addition (0, 30, 60, or 90 kg N ha−1 yr−1) on soil CH4 flux and methanotroph and methanogen abundance, diversity, and community structure in a Moso bamboo (Phyllostachys edulis) forest in subtropical China. N addition significantly increased methanogen abundance but reduced both methanotroph and methanogen diversity. Methanotroph and methanogen community structures under the N deposition treatments were significantly different from those of the control. In N deposition treatments, the relative abundance of Methanoculleus was significantly lower than that in the control. Soil pH was the key factor regulating the changes in methanotroph and methanogen diversity and community structure. The CH4 emission rate increased with N addition and was negatively correlated with both methanotroph and methanogen diversity but positively correlated with methanogen abundance. Overall, our results suggested that N deposition can suppress CH4 uptake by altering methanotroph and methanogen abundance, diversity, and community structure in subtropical Moso bamboo forest soils.


Author(s):  
Zhen’an Yang ◽  
Wei Zhan ◽  
Lin Jiang ◽  
Huai Chen

As one of the nitrogen (N) limitation ecosystems, alpine meadows have significant effects on their structure and function. However, research on the response and linkage of vegetation-soil to short-term low-level N deposition with rhizosphere processes is scant. We conducted a four level N addition (0, 20, 40, and 80 kg N ha−1 y−1) field experiment in an alpine meadow on the Qinghai-Tibetan Plateau (QTP) from July 2014 to August 2016. We analyzed the community characteristics, vegetation (shoots and roots), total carbon (TC), nutrients, soil (rhizosphere and bulk) properties, and the linkage between vegetation and soil under different N addition rates. Our results showed that (i) N addition significantly increased and decreased the concentration of soil nitrate nitrogen (NO3−-N) and ammonium nitrogen, and the soil pH, respectively; (ii) there were significant correlations between soil (rhizosphere and bulk) NO3−-N and total nitrogen (TN), and root TN, and there was no strong correlation between plant and soil TC, TN and total phosphorus, and their stoichiometry under different N addition rates. The results suggest that short-term low-N addition affected the plant community, vegetation, and soil TC, TN, TP, and their stoichiometry insignificantly, and that the correlation between plant and soil TC, TN, and TP, and their stoichiometry were insignificant.


2016 ◽  
Author(s):  
Geshere Abdisa Gurmesa ◽  
Xiankai Lu ◽  
Per Gundersen ◽  
Yunting Fang ◽  
Qinggong Mao ◽  
...  

Abstract. Natural abundance of 15N (δ15N) in plants and soils can provide integrated information on ecosystem nitrogen (N) cycling, but it has not been well tested in warm and humid sub-tropical forests. In this study, we examined the measurement of δ15N for its ability to assess changes in N cycling due to increased N deposition in an old-growth broadleaved forest and a secondary pine forest in a high N deposition area in southern China. We measured δ15N of inorganic N in input and output fluxes under ambient N deposition, and N concentration (N %) and δ15N of major ecosystem compartments under ambient and after decadal N addition at 50 kg N ha−1 yr−1. Our results showed that the N deposition was δ15N-depleted (−12 ‰) mainly due to high input of depleted NH4+-N. Plant leafs in both forest were also δ15N-depleted (−4 to −6 ‰). The old-growth forest had higher plant and soil N %, and was more 15N-enriched in most ecosystem compartments relative to the pine forest. Nitrogen addition did not significantly affect N % in both forests, indicating that the ecosystem pools are already N-rich. Soil δ15N was not changed significantly by the N addition in both forests. However, the N addition significantly increased the δ15N of plants toward the 15N signature of the added N (~ 0 ‰), indicating incorporation of added N into plants. Thus, plant δ15N was sensitive to ecosystem N input manipulation although N % was unchanged in these N-rich sub-tropical forests. We interpret the depleted δ15N values of plants as an imprint from the high and δ15N-depleted N deposition. The signal from the input (deposition or N addition) may override the enrichment effects of fractionation during the steps of N cycling that are observed in most warm and humid forests. Thus, interpretation of ecosystem δ15N values from high N deposition regions need to include data on the deposition δ15N signal.


2010 ◽  
Vol 654-656 ◽  
pp. 2126-2129 ◽  
Author(s):  
Yuichi Nakahira ◽  
Tomonari Inamura ◽  
Hiroyasu Kanetaka ◽  
Shuichi Miyazaki ◽  
Hideki Hosoda

Effect of nitrogen (N) addition on mechanical properties of Ti-Cr-Sn alloy was investigated in this study. Ti-7mol%Cr-3mol%Sn was selected and less than 0.5wt% of N were systematically added. The alloys were characterized by optical microscopy, X-ray diffraction analysis and tensile tests at room temperature. The apparent phase was β (bcc) phase, whereas the presence of precipitates was confirmed in 0.5wt%N-added alloy only which did not exhibit sufficient cold workability. The grain size was not largely affected by N addition being less than 0.5wt%. Tensile tests revealed that less than 0.5wt%N addition improves the strength which is due to the solution hardening by interstitial N atoms.


Sign in / Sign up

Export Citation Format

Share Document