scholarly journals Effects of pulsating heat source on interstitial fluid transport in tumour tissues

2020 ◽  
Vol 17 (170) ◽  
pp. 20200612
Author(s):  
A. Andreozzi ◽  
M. Iasiello ◽  
P. A. Netti

Macromolecules and drug delivery to solid tumours is strongly influenced by fluid flow through interstitium, and pressure-induced tissue deformations can have a role in this. Recently, it has been shown that temperature-induced tissue deformation can influence interstitial fluid velocity and pressure fields, too. In this paper, the effect of modulating-heat strategies to influence interstitial fluid transport in tissues is analysed. The whole tumour tissue is modelled as a deformable porous material, where the solid phase is made up of the extracellular matrix and cells, while the fluid phase is the interstitial fluid that moves through the solid matrix driven by the fluid pressure gradient and vascular capillaries that are modelled as a uniformly interspersed fluid point-source. Pulsating-heat generation is modelled with a time-variable cosine function starting from a direct current approach to solve the voltage equation, for different pulsations. From the steady-state solution, a step-variation of vascular pressure included in the model equation as a mass source term via the Starling equation is simulated. Dimensionless 1D radial equations are numerically solved with a finite-element scheme. Results are presented in terms of temperature, volumetric strain, pressure and velocity profiles under different conditions. It is shown that a modulating-heat procedure influences velocity fields, that might have a consequence in terms of mass transport for macromolecules or drug delivery.

2015 ◽  
Vol 101 ◽  
pp. 62-71 ◽  
Author(s):  
Mohammad Charjouei Moghadam ◽  
Amin Deyranlou ◽  
Alireza Sharifi ◽  
Hamid Niazmand

Oncotarget ◽  
2018 ◽  
Vol 9 (87) ◽  
pp. 35723-35725 ◽  
Author(s):  
Steven K. Libutti ◽  
Lawrence Tamarkin ◽  
Naris Nilubol

Author(s):  
Jay J. Shim ◽  
Gerard A. Ateshian

Abstract Mixture theory is a general framework that has been used to model mixtures of solid, fluid, and solute constituents, leading to significant advances in modeling the mechanics of biological tissues and cells. Though versatile and applicable to a wide range of problems in biomechanics and biophysics, standard multiphasic mixture frameworks incorporate neither dynamics of viscous fluids nor fluid compressibility, both of which facilitate the finite element implementation of computational fluid dynamics solvers. This study formulates governing equations for reactive multiphasic mixtures where the interstitial fluid has a solvent which is viscous and compressible. This hybrid reactive multiphasic framework uses state variables that include the deformation gradient of the porous solid matrix, the volumetric strain and rate of deformation of the solvent, the solute concentrations, and the relative velocities between the various constituents. Unlike standard formulations which employ a Lagrange multiplier to model fluid pressure, this framework requires the formulation of a function of state for the pressure, which depends on solvent volumetric strain and solute concentrations. Under isothermal conditions the formulation shows that the solvent volumetric strain remains continuous across interfaces between hybrid multiphasic domains. Apart from the Lagrange multiplier-state function distinction for the fluid pressure, and the ability to accommodate viscous fluid dynamics, this hybrid multiphasic framework remains fully consistent with standard multiphasic formulations previously employed in biomechanics. With these additional features, the hybrid multiphasic mixture theory makes it possible to address a wider range of problems that are important in biomechanics and mechanobiology.


2008 ◽  
Vol 130 (4) ◽  
Author(s):  
Yiling Lu ◽  
Wen Wang

The Movement of the interstitial fluid in extracellular matrices not only affects the mechanical properties of soft tissues, but also facilitates the transport of nutrients and the removal of waste products. In this study, we aim to quantify interstitial fluid movement and fluid-matrix interaction in a new loading configuration—confined tissue indentation, using a poroelastic theory. The tissue sample sits in a cylindrical chamber and loading is applied on the top central surface of the specimen by a porous indenter that is fixed on the specimen. The interaction between the solid and the fluid is examined using a finite element method under ramp and cyclic loads. Typical compression-relaxation responses of the specimen are observed in a ramp load. Under a cyclic load, the system reaches a dynamic equilibrium after a number of loading cycles. Fluid circulation, with opposite directions in the loading and unloading phases in the extracellular matrix, is observed. The most significant variation in the fluid pressure locates just beneath the indenter. Fluid pressurization arrives at equilibrium much faster than the solid matrix deformation. As the loading frequency increases, the location of the peak pressure oscillation moves closer to the indenter and the magnitude of the pressure oscillation increases. Concomitantly, the axial stress variation of the solid matrix is reduced. It is found that interstitial fluid movement helps to alleviate severe strain of the solid matrix beneath the indenter. This study quantifies the interaction between the interstitial fluid and the extracellular matrix by decomposing the loading response of the specimen into the “transient” and “dynamic equilibrium” phases. Confined indentation in this manuscript gives a better representation of some in vitro and in vivo loading configurations where the indenter covers part of the top surface of the tissue.


2006 ◽  
Vol 290 (4) ◽  
pp. H1460-H1468 ◽  
Author(s):  
Ellen Berggreen ◽  
Helge Wiig

The submandibular gland transports fluid at a high rate through the interstitial space during salivation, but the exact level of all forces governing transcapillary fluid transport has not been established. In this study, our aim was to measure the relation between interstitial fluid volume (Vi) and interstitial fluid pressure (Pif) in salivary glands during active secretion and after systemically induced passive changes in gland hydration. We tested whether interstitial fluid could be isolated by tissue centrifugation to enable measurement of interstitial fluid colloid osmotic pressure. During control conditions, Vi averaged 0.23 ml/g wet wt (SD 0.014), with a corresponding mean Pif measured with micropipettes of 3.0 mmHg (SD 1.3). After induction of secretion by pilocarpine, Pif dropped by 3.8 mmHg (SD 1.5) whereas Vi was unchanged. During dehydration and overhydration of up to 20% increase of Vi above control, a linear relation was found between volume and pressure, resulting in a compliance (ΔVi/ΔPif) of 0.012 ml·g wet wt−1·mmHg−1. Interstitial fluid was isolated, and interstitial fluid colloid osmotic pressure averaged 10.4 mmHg (SD 1.2), which is 64% of the corresponding level in plasma. We conclude that Pif drops during secretion and, thereby, increases the net transcapillary pressure gradient, a condition that favors fluid filtration and increases the amount of fluid available for secretion. The reduction in Pif is most likely induced by contraction of myoepithelial cells and suggests an active and new role for these cells in salivary secretion. The relatively low interstitial compliance of the organ will enhance the effect of the myoepithelial cells on Pif during reduced Vi.


2020 ◽  
Vol 8 (14) ◽  
pp. 3907-3915
Author(s):  
Xiaoping Qian ◽  
Tinghui Shen ◽  
Xiaoke Zhang ◽  
Chongzhi Wang ◽  
Weibo Cai ◽  
...  

Biologically active Camellia oleifera protein nanoparticles can lower tumor interstitial fluid pressure and solid stress, improving the therapeutic response.


2022 ◽  
Author(s):  
Gi-hun Lee ◽  
Stephanie A Huang ◽  
Wen Yih Aw ◽  
Mitesh Rathod ◽  
Crescentia Cho ◽  
...  

Abstract Efficient delivery of oxygen and nutrients to tissues requires an intricate balance of blood, lymphatic, and interstitial fluid pressures, and gradients in fluid pressure drive the flow of blood, lymph, and interstitial fluid through tissues. While specific fluid mechanical stimuli, such as wall shear stress, have been shown to modulate cellular signaling pathways along with gene and protein expression patterns, an understanding of the key signals imparted by flowing fluid and how these signals are integrated across multiple cells and cell types in native tissues is incomplete due to limitations with current assays. Here, we introduce a multi-layer microfluidic platform (MLTI-Flow) that enables the culture of engineered blood and lymphatic microvessels and independent control of blood, lymphatic, and interstitial fluid pressures. Using optical microscopy methods to measure fluid velocity for applied input pressures, we demonstrate varying rates of interstitial fluid flow as a function of blood, lymphatic, and interstitial pressure, consistent with computational fluid dynamics models. The resulting microfluidic and computational platforms will provide for analysis of key fluid mechanical parameters and cellular mechanisms that contribute to diseases in which fluid imbalances play a role in progression, including lymphedema and solid cancer.


Sign in / Sign up

Export Citation Format

Share Document