scholarly journals Risk mapping for COVID-19 outbreaks in Australia using mobility data

2021 ◽  
Vol 18 (174) ◽  
pp. 20200657
Author(s):  
Cameron Zachreson ◽  
Lewis Mitchell ◽  
Michael J. Lydeamore ◽  
Nicolas Rebuli ◽  
Martin Tomko ◽  
...  

COVID-19 is highly transmissible and containing outbreaks requires a rapid and effective response. Because infection may be spread by people who are pre-symptomatic or asymptomatic, substantial undetected transmission is likely to occur before clinical cases are diagnosed. Thus, when outbreaks occur there is a need to anticipate which populations and locations are at heightened risk of exposure. In this work, we evaluate the utility of aggregate human mobility data for estimating the geographical distribution of transmission risk. We present a simple procedure for producing spatial transmission risk assessments from near-real-time population mobility data. We validate our estimates against three well-documented COVID-19 outbreaks in Australia. Two of these were well-defined transmission clusters and one was a community transmission scenario. Our results indicate that mobility data can be a good predictor of geographical patterns of exposure risk from transmission centres, particularly in outbreaks involving workplaces or other environments associated with habitual travel patterns. For community transmission scenarios, our results demonstrate that mobility data add the most value to risk predictions when case counts are low and spatially clustered. Our method could assist health systems in the allocation of testing resources, and potentially guide the implementation of geographically targeted restrictions on movement and social interaction.

2021 ◽  
Vol 4 ◽  
Author(s):  
A. Potgieter ◽  
I. N. Fabris-Rotelli ◽  
Z. Kimmie ◽  
N. Dudeni-Tlhone ◽  
J. P. Holloway ◽  
...  

The COVID-19 pandemic starting in the first half of 2020 has changed the lives of everyone across the world. Reduced mobility was essential due to it being the largest impact possible against the spread of the little understood SARS-CoV-2 virus. To understand the spread, a comprehension of human mobility patterns is needed. The use of mobility data in modelling is thus essential to capture the intrinsic spread through the population. It is necessary to determine to what extent mobility data sources convey the same message of mobility within a region. This paper compares different mobility data sources by constructing spatial weight matrices at a variety of spatial resolutions and further compares the results through hierarchical clustering. We consider four methods for constructing spatial weight matrices representing mobility between spatial units, taking into account distance between spatial units as well as spatial covariates. This provides insight for the user into which data provides what type of information and in what situations a particular data source is most useful.


Author(s):  
Arminn Potgieter ◽  
Inger Fabris-Rotelli ◽  
Zaid Kimmie ◽  
Nontembeko Dudeni-Tlhone ◽  
Jenny Holloway ◽  
...  

The COVID-19 pandemic starting in the first half of 2020 has changed the lives of everyone across the world. Reduced mobility was essential due to it being the largest impact possible against the spread of the little understood SARS-CoV-2 virus. To understand the spread, a comprehension of human mobility patterns is needed. The use of mobility data in modelling is thus essential to capture the intrinsic spread through the population. It is necessary to determine to what extent mobility data convey the same message of mobility within a region. This paper compares different mobility data sources by constructing spatial weight matrices and further compares the results through hierarchical clustering. This provides insight for the user into which data provides what type of information and in what situations a particular source is most useful.


2020 ◽  
Author(s):  
Kathy Leung ◽  
Joseph T Wu ◽  
Gabriel M Leung

AbstractDigital proxies of human mobility and physical mixing have been used to monitor viral transmissibility and effectiveness of social distancing interventions in the ongoing COVID-19 pandemic. We developed a new framework that parameterizes disease transmission models with age-specific digital mobility data. By fitting the model to case data in Hong Kong, we were able to accurately track the local effective reproduction number of COVID-19 in near real time (i.e. no longer constrained by the delay of around 9 days between infection and reporting of cases) which is essential for quick assessment of the effectiveness of interventions on reducing transmissibility. Our findings showed that accurate nowcast and forecast of COVID-19 epidemics can be obtained by integrating valid digital proxies of physical mixing into conventional epidemic models.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Xiaoxuan Yang

Abstract Background At 10 a.m. on January 23, 2020 Wuhan, China imposed a 76-day travel lockdown on its 11 million residents in order to stop the spread of COVID-19. This lockdown represented the largest quarantine in the history of public health and provides us with an opportunity to critically examine the relationship between a city lockdown on human mobility and controlling the spread of a viral epidemic, in this case COVID-19. This study aims to assess the causal impact of the Wuhan lockdown on population movement and the increase of newly confirmed COVID-19 cases. Methods Based on the daily panel data from 279 Chinese cities, our research is the first to apply the synthetic control approach to empirically analyze the causal relationship between the Wuhan lockdown of its population mobility and the progression of newly confirmed COVID-19 cases. By using a weighted average of available control cities to reproduce the counterfactual outcome trajectory that the treated city would have experienced in the absence of the lockdown, the synthetic control approach overcomes the sample selection bias and policy endogeneity problems that can arise from previous empirical methods in selecting control units. Results In our example, the lockdown of Wuhan reduced mobility inflow by approximately 60 % and outflow by about 50 %. A significant reduction of new cases was observed within four days of the lockdown. The increase in new cases declined by around 50% during this period. However, the suppression effect became less discernible after this initial period of time. A 2.25-fold surge was found for the increase in new cases on the fifth day following the lockdown, after which it died down rapidly. Conclusions Our study provided urgently needed and reliable causal evidence that city lockdown can be an effective short-term tool in containing and delaying the spread of a viral epidemic. Further, the city lockdown strategy can buy time during which countries can mobilize an effective response in order to better prepare. Therefore, in spite of initial widespread skepticism, lockdowns are likely to be added to the response toolkit used for any future pandemic outbreak.


Epidemiologia ◽  
2021 ◽  
Vol 2 (3) ◽  
pp. 294-304
Author(s):  
Luis A. Barboza ◽  
Paola Vásquez ◽  
Gustavo Mery ◽  
Fabio Sanchez ◽  
Yury E. García ◽  
...  

The aim of this paper is to infer the effects that change on human mobility had on the transmission dynamics during the first four months of the SARS-CoV-2 pandemic in Costa Rica, which could have played a role in delaying community transmission in the country. First, by using parametric and non-parametric change-point detection techniques, we were able to identify two different periods when the trend of daily new cases significantly changed. Second, we explored the association of these changes with data on population mobility. This also allowed us to estimate the lag between changes in human mobility and rates of daily new cases. The information was then used to establish an association between changes in population mobility and the sanitary measures adopted during the study period. Results showed that during the initial two months of the pandemic in Costa Rica, the implementation of sanitary measures and their impact on reducing human mobility translated to a mean reduction of 54% in the number of daily cases from the projected number, delaying community transmission.


PLoS ONE ◽  
2021 ◽  
Vol 16 (7) ◽  
pp. e0254403
Author(s):  
Tatsushi Oka ◽  
Wei Wei ◽  
Dan Zhu

Background COVID-19 poses a severe threat worldwide. This study analyzes its propagation and evaluates statistically the effect of mobility restriction policies on the spread of the disease. Methods We apply a variation of the stochastic Susceptible-Infectious-Recovered model to describe the temporal-spatial evolution of the disease across 33 provincial regions in China, where the disease was first identified. We employ Bayesian Markov Chain Monte-Carlo methods to estimate the model and to characterize a dynamic transmission network, which enables us to evaluate the effectiveness of various local and national policies. Results The spread of the disease in China was predominantly driven by community transmission within regions, which dropped substantially after local governments imposed various lockdown policies. Further, Hubei was only the epicenter of the early epidemic stage. Secondary epicenters, such as Beijing and Guangdong, had already become established by late January 2020. The transmission from these epicenters substantially declined following the introduction of mobility restrictions across regions. Conclusions The spatial transmission network is able to differentiate the effect of the local lockdown policies and the cross-region mobility restrictions. We conclude that both are important policy tools for curbing the disease transmission. The coordination between central and local governments is important in suppressing the spread of infectious diseases.


2018 ◽  
Vol 115 (11) ◽  
pp. 2752-2757 ◽  
Author(s):  
Sen Pei ◽  
Sasikiran Kandula ◽  
Wan Yang ◽  
Jeffrey Shaman

Recurrent outbreaks of seasonal and pandemic influenza create a need for forecasts of the geographic spread of this pathogen. Although it is well established that the spatial progression of infection is largely attributable to human mobility, difficulty obtaining real-time information on human movement has limited its incorporation into existing infectious disease forecasting techniques. In this study, we develop and validate an ensemble forecast system for predicting the spatiotemporal spread of influenza that uses readily accessible human mobility data and a metapopulation model. In retrospective state-level forecasts for 35 US states, the system accurately predicts local influenza outbreak onset,—i.e., spatial spread, defined as the week that local incidence increases above a baseline threshold—up to 6 wk in advance of this event. In addition, the metapopulation prediction system forecasts influenza outbreak onset, peak timing, and peak intensity more accurately than isolated location-specific forecasts. The proposed framework could be applied to emergent respiratory viruses and, with appropriate modifications, other infectious diseases.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Kathy Leung ◽  
Joseph T. Wu ◽  
Gabriel M. Leung

AbstractDigital proxies of human mobility and physical mixing have been used to monitor viral transmissibility and effectiveness of social distancing interventions in the ongoing COVID-19 pandemic. We develop a new framework that parameterizes disease transmission models with age-specific digital mobility data. By fitting the model to case data in Hong Kong, we are able to accurately track the local effective reproduction number of COVID-19 in near real time (i.e., no longer constrained by the delay of around 9 days between infection and reporting of cases) which is essential for quick assessment of the effectiveness of interventions on reducing transmissibility. Our findings show that accurate nowcast and forecast of COVID-19 epidemics can be obtained by integrating valid digital proxies of physical mixing into conventional epidemic models.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Shaobin Wang ◽  
Yun Tong ◽  
Yupeng Fan ◽  
Haimeng Liu ◽  
Jun Wu ◽  
...  

AbstractSince spring 2020, the human world seems to be exceptionally silent due to mobility reduction caused by the COVID-19 pandemic. To better measure the real-time decline of human mobility and changes in socio-economic activities in a timely manner, we constructed a silent index (SI) based on Google’s mobility data. We systematically investigated the relations between SI, new COVID-19 cases, government policy, and the level of economic development. Results showed a drastic impact of the COVID-19 pandemic on increasing SI. The impact of COVID-19 on human mobility varied significantly by country and place. Bi-directional dynamic relationships between SI and the new COVID-19 cases were detected, with a lagging period of one to two weeks. The travel restriction and social policies could immediately affect SI in one week; however, could not effectively sustain in the long run. SI may reflect the disturbing impact of disasters or catastrophic events on the activities related to the global or national economy. Underdeveloped countries are more affected by the COVID-19 pandemic.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Alexandru Topîrceanu ◽  
Radu-Emil Precup

AbstractComputational models for large, resurgent epidemics are recognized as a crucial tool for predicting the spread of infectious diseases. It is widely agreed, that such models can be augmented with realistic multiscale population models and by incorporating human mobility patterns. Nevertheless, a large proportion of recent studies, aimed at better understanding global epidemics, like influenza, measles, H1N1, SARS, and COVID-19, underestimate the role of heterogeneous mixing in populations, characterized by strong social structures and geography. Motivated by the reduced tractability of studies employing homogeneous mixing, which make conclusions hard to deduce, we propose a new, very fine-grained model incorporating the spatial distribution of population into geographical settlements, with a hierarchical organization down to the level of households (inside which we assume homogeneous mixing). In addition, population is organized heterogeneously outside households, and we model the movement of individuals using travel distance and frequency parameters for inter- and intra-settlement movement. Discrete event simulation, employing an adapted SIR model with relapse, reproduces important qualitative characteristics of real epidemics, like high variation in size and temporal heterogeneity (e.g., waves), that are challenging to reproduce and to quantify with existing measures. Our results pinpoint an important aspect, that epidemic size is more sensitive to the increase in distance of travel, rather that the frequency of travel. Finally, we discuss implications for the control of epidemics by integrating human mobility restrictions, as well as progressive vaccination of individuals.


Sign in / Sign up

Export Citation Format

Share Document