scholarly journals Regulatory principles governing the maternal-to-zygotic transition: insights from Drosophila melanogaster

Open Biology ◽  
2018 ◽  
Vol 8 (12) ◽  
pp. 180183 ◽  
Author(s):  
Danielle C. Hamm ◽  
Melissa M. Harrison

The onset of metazoan development requires that two terminally differentiated germ cells, a sperm and an oocyte, become reprogrammed to the totipotent embryo, which can subsequently give rise to all the cell types of the adult organism. In nearly all animals, maternal gene products regulate the initial events of embryogenesis while the zygotic genome remains transcriptionally silent. Developmental control is then passed from mother to zygote through a process known as the maternal-to-zygotic transition (MZT). The MZT comprises an intimately connected set of molecular events that mediate degradation of maternally deposited mRNAs and transcriptional activation of the zygotic genome. This essential developmental transition is conserved among metazoans but is perhaps best understood in the fruit fly, Drosophila melanogaster . In this article, we will review our understanding of the events that drive the MZT in Drosophila embryos and highlight parallel mechanisms driving this transition in other animals.

2018 ◽  
Author(s):  
Alba Ventos-Alfonso ◽  
Guillem Ylla ◽  
Xavier Belles

AbstractIn the Endopterygote Drosophila melanogaster, Zelda is a key activator of the zygotic genome during the maternal-to-zygotic transition (MZT). Zelda binds cis-regulatory elements (TAGteam heptamers), and makes chromatin accessible for gene transcription. Recently, Zelda has been studied in two other Endopterygotes: Apis mellifera and Tribolium castaneum, and the Paraneopteran Rhodnius prolixus. We have studied Zelda in the cockroach Blattella germanica, a hemimetabolan, short germ-band, and Polyneopteran species. Zelda protein of B. germanica has the complete set of functional domains, which is typical of lower insects. The TAGteam heptamers of D. melanogaster have been found in the B. germanica genome, and the canonical one, CAGGTAG, is present at a similar relative number in the genome of these two species and in the genome of other insects, suggesting that, although within certain evolutionary constraints, the genome admits as many CAGGTAG motifs as its length allows. Zelda-depleted embryos of B. germanica show defects involving the blastoderm formation and the abdomen development and have genes contributing to these processes down-regulated. We conclude that in B. germanica Zelda strictly activates the zygotic genome, within the MZT, a role conserved in more derived Endopterygote insects. In B. germanica, Zelda is expressed during MZT, whereas in D. melanogaster and T. castaneum it is expressed well beyond this transition. Moreover, in these species and A. mellifera, Zelda has functions even in postembryonic development. The expansion of Zelda expression and functions beyond the MZT in holometabolan species might have been instrumental for the evolutionary transition from hemimetaboly to holometaboly. In particular, the expression of Zelda beyond the MZT during embryogenesis might have allowed building the morphologically divergent holometabolan larva.Author summaryIn early insect embryo development, the protein Zelda is a key activator of the zygotic genome during the maternal-to-zygotic transition. This has been thoroughly demonstrated in the fruit fly Drosophila melanogaster, as well as in the red flour beetle Tribolium castaneum, both species belonging to the most modified clade of endopterygote insects, showing complete (holometabolan) metamorphosis. In these species, Zelda is expressed and have functions in early embryogenesis, in late embryogenesis and in postembryonic stages. We have studied Zelda in the German cockroach, Blattella germanica, which belong to the less modified clade of polyneopteran insects, showing an incomplete (hemimetabolan) metamorphosis. In B. germanica, Zelda is significantly expressed in early embryogenesis, being a key activator of the zygotic genome during the maternal-to-zygotic transition, as in the fruit fly and the red flour beetle. Nevertheless, Zelda is not significantly expressed, and presumably has no functions, in late embryogenesis and in postembryonic stages of the cockroach. The data suggest that the ancestral function of Zelda in insects with hemimetabolan metamorphosis was to activate the zygotic genome, a function circumscribed to early embryogenesis. The expansion of Zelda expression and functions to late embryogenesis and postembryonic stages might have been a key step in the evolutionary transition from hemimetaboly to holometaboly. In hemimetabolan species embryogenesis produces a nymph displaying the essential adult body structure. In contrast, embryogenesis of holometabolan species produces a larva that is morphologically very divergent from the adult. Expression of Zelda in late embryogenesis might have been a key step in the evolution from hemimetaboly to holometaboly, since it would have allowed the building the morphologically divergent holometabolan larva.


Reproduction ◽  
2016 ◽  
Vol 152 (6) ◽  
pp. R211-R222 ◽  
Author(s):  
Rupsha Fraser ◽  
Chih-Jen Lin

Gametogenesis (spermatogenesis and oogenesis) is accompanied by the acquisition of gender-specific epigenetic marks, such as DNA methylation, histone modifications and regulation by small RNAs, to form highly differentiated, but transcriptionally silent cell-types in preparation for fertilisation. Upon fertilisation, extensive global epigenetic reprogramming takes place to remove the previously acquired epigenetic marks and produce totipotent zygotic states. It is the aim of this review to delineate the cellular and molecular events involved in maternal, paternal and zygotic epigenetic reprogramming from the time of gametogenesis, through fertilisation, to the initiation of zygotic genome activation for preimplantation embryonic development. Recent studies have begun to uncover the indispensable functions of epigenetic players during gametogenesis, fertilisation and preimplantation embryo development, and a more comprehensive understanding of these early events will be informative for increasing pregnancy success rates, adding particular value to assisted fertility programmes.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Ping Kao ◽  
Michael D. Nodine

AbstractCommonly referred to as the maternal-to-zygotic transition, the shift of developmental control from maternal-to-zygotic genomes is a key event during animal and plant embryogenesis. Together with the degradation of parental gene products, the increased transcriptional activities of the zygotic genome remodels the early embryonic transcriptome during this transition. Although evidence from multiple flowering plants suggests that zygotes become transcriptionally active soon after fertilization, the timing and developmental requirements of zygotic genome activation in Arabidopsis thaliana (Arabidopsis) remained a matter of debate until recently. In this report, we optimized an expansion microscopy technique for robust immunostaining of Arabidopsis ovules and seeds. This enabled the detection of marks indicative of active transcription in zygotes before the first cell division. Moreover, we employed a live-imaging culture system together with transcriptional inhibitors to demonstrate that such active transcription is physiologically required in zygotes and early embryos. Our results indicate that zygotic genome activation occurs soon after fertilization and is required for the initial zygotic divisions in Arabidopsis.


2019 ◽  
Author(s):  
Ping Kao ◽  
Michael Nodine

SUMMARYCommonly referred to as the maternal-to-zygotic transition, the shift of developmental control from maternal-to-zygotic genomes is a key event during animal and plant embryogenesis. Together with the degradation of parental gene products, the increased transcriptional activities of the zygotic genome remodels the early embryonic transcriptome during this transition. Although evidence from multiple flowering plants suggests that zygotes become transcriptionally active soon after fertilization, the timing and developmental requirements of zygotic genome activation in Arabidopsis thaliana (Arabidopsis) remained a matter of debate until recently. In this report, we optimized an expansion microscopy technique for robust immunostaining of Arabidopsis ovules and seeds. This enabled the detection of marks indicative of active transcription in zygotes before the first cell division. Moreover, we employed a live-imaging culture system together with transcriptional inhibitors to demonstrate that such active transcription is required in zygotes. Our results indicate that zygotic genome activation occurs soon after fertilization and is physiologically required prior to the initial zygotic division in Arabidopsis.


Author(s):  
Mandar S. Paingankar ◽  
Mangesh D. Gokhale ◽  
Deepti D. Deobagkar ◽  
Dileep N. Deobagkar

ABSTRACTArboviruses cause the most devastating diseases in humans and animals worldwide. Several hundred arbovirus are transmitted by mosquitoes, sand flies or ticks and are responsible for more than million deaths annually. Development of a model system is essential to extrapolate the molecular events occurring during infection in the human and mosquito host. Virus overlay protein binding assay (VOPBA) combined with MALDI TOF/TOF MS revealed that Dengue-2 virus (DENV-2) exploits similar protein molecules in Drosophila melanogaster and Aedes aegypti for its infection. Furthermore, the virus susceptibility studies revealed that DENV-2 could propagate in D. melanogaster, and DENV-2 produced in fruit fly is equally infectious to D. melanogaster and Ae. aegypti. Additionally, real time PCR analysis revealed that RNAi coupled with JAK-STAT and Toll pathway constitutes an effector mechanism to control the DENV-2 infection in flies. These observations point out that D. melanogaster harbors all necessary machineries to support the growth of arboviruses. With the availability of well-established techniques for genetic and developmental manipulations, D. melanogaster, offers itself as the potential model system for the study of arbovirus-vector interactions.


mBio ◽  
2014 ◽  
Vol 5 (3) ◽  
Author(s):  
Nichole A. Broderick ◽  
Nicolas Buchon ◽  
Bruno Lemaitre

ABSTRACT To elucidate mechanisms underlying the complex relationships between a host and its microbiota, we used the genetically tractable model Drosophila melanogaster. Consistent with previous studies, the microbiota was simple in composition and diversity. However, analysis of single flies revealed high interfly variability that correlated with differences in feeding. To understand the effects of this simple and variable consortium, we compared the transcriptome of guts from conventionally reared flies to that for their axenically reared counterparts. Our analysis of two wild-type fly lines identified 121 up- and 31 downregulated genes. The majority of these genes were associated with immune responses, tissue homeostasis, gut physiology, and metabolism. By comparing the transcriptomes of young and old flies, we identified temporally responsive genes and showed that the overall impact of microbiota was greater in older flies. In addition, comparison of wild-type gene expression with that of an immune-deficient line revealed that 53% of upregulated genes exerted their effects through the immune deficiency (Imd) pathway. The genes included not only classic immune response genes but also those involved in signaling, gene expression, and metabolism, unveiling new and unexpected connections between immunity and other systems. Given these findings, we further characterized the effects of gut-associated microbes on gut morphology and epithelial architecture. The results showed that the microbiota affected gut morphology through their impacts on epithelial renewal rate, cellular spacing, and the composition of different cell types in the epithelium. Thus, while bacteria in the gut are highly variable, the influence of the microbiota at large has far-reaching effects on host physiology. IMPORTANCE The guts of animals are in constant association with microbes, and these interactions are understood to have important roles in animal development and physiology. Yet we know little about the mechanisms underlying the establishment and function of these associations. Here, we used the fruit fly to understand how the microbiota affects host function. Importantly, we found that the microbiota has far-reaching effects on host physiology, ranging from immunity to gut structure. Our results validate the notion that important insights on complex host-microbe relationships can be obtained from the use of a well-established and genetically tractable invertebrate model.


2019 ◽  
Vol 101 (3) ◽  
pp. 579-590 ◽  
Author(s):  
Qian-Qian Sha ◽  
Jue Zhang ◽  
Heng-Yu Fan

Abstract In mammals, maternal-to-zygotic transition (MZT), or oocyte-to-embryo transition, begins with oocyte meiotic resumption due to the sequential translational activation and destabilization of dormant maternal transcripts stored in the ooplasm. It then continues with the elimination of maternal transcripts during oocyte maturation and fertilization and ends with the full transcriptional activation of the zygotic genome during embryonic development. A hallmark of MZT in mammals is its reliance on translation and the utilization of stored RNAs and proteins, rather than de novo transcription of genes, to sustain meiotic maturation and early development. Impaired maternal mRNA clearance at the onset of MZT prevents zygotic genome activation and causes early arrest of developing embryos. In this review, we discuss recent advances in our knowledge of the mechanisms whereby mRNA translation and degradation are controlled by cytoplasmic polyadenylation and deadenylation which set up the competence of maturing oocyte to accomplish MZT. The emphasis of this review is on the mouse as a model organism for mammals and BTG4 as a licensing factor of MZT under the translational control of the MAPK cascade.


Insects ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 14
Author(s):  
Pavel A. Melentev ◽  
Eduard G. Sharapenkov ◽  
Nina V. Surina ◽  
Ekaterina A. Ivanova ◽  
Elena V. Ryabova ◽  
...  

Drosophila melanogaster is one of the most famous insects in biological research. It is widely used to analyse functions of different genes. The phosphatidylcholine lysophospholipase gene swiss cheese was initially shown to be important in the fruit fly nervous system. However, the role of this gene in non-nervous cell types has not been elucidated yet, and the evolutional explanation for the conservation of its function remains elusive. In this study, we analyse expression pattern and some aspects of the role of the swiss cheese gene in the fitness of Drosophila melanogaster. We describe the spatiotemporal expression of swiss cheese throughout the fly development and analyse the survival and productivity of swiss cheese mutants. We found swiss cheese to be expressed in salivary glands, midgut, Malpighian tubes, adipocytes, and male reproductive system. Dysfunction of swiss cheese results in severe pupae and imago lethality and decline of fertility, which is impressive in males. The latter is accompanied with abnormalities of male locomotor activity and courtship behaviour, accumulation of lipid droplets in testis cyst cells and decrease in spermatozoa motility. These results suggest that normal swiss cheese is important for Drosophila melanogaster fitness due to its necessity for both specimen survival and their reproductive success.


2017 ◽  
Author(s):  
Danielle C. Hamm ◽  
Elizabeth D. Larson ◽  
Markus Nevil ◽  
Kelsey E. Marshall ◽  
Eliana R. Bondra ◽  
...  

ABSTRACTIn nearly all metazoans, the earliest stages of development are controlled by maternally deposited mRNAs and proteins. The zygotic genome becomes transcriptionally active hours after fertilization. Transcriptional activation during this maternal-to-zygotic transition (MZT) is tightly coordinated with the degradation of maternally provided mRNAs. In Drosophila melanogaster, the transcription factor Zelda plays an essential role in widespread activation of the zygotic genome. While Zelda expression is required both maternally and zygotically, the mechanisms by which it functions to remodel the embryonic genome and prepare the embryo for development remain unclear. Using Cas9-mediated genome editing to generate targeted mutations in the endogenous zelda locus, we determined the functional relevance of protein domains conserved amongst Zelda orthologs. We showed that neither a conserved N-terminal zinc finger nor an acidic patch were required for activity. Similarly, a previously identified splice isoform of zelda is dispensable for viability. By contrast, we identified a highly conserved zinc-finger domain that is essential for the maternal, but not zygotic functions of Zelda. Animals homozygous for mutations in this domain survived to adulthood, but embryos inheriting these loss-off-function alleles from their mothers died late in embryogenesis. These mutations did not interfere with the capacity of Zelda to activate transcription. Unexpectedly, these mutations generated a hyperactive form of the protein and enhanced Zelda-dependent gene expression. These data have defined a protein domain critical for controlling Zelda activity during the MZT, but dispensable for its roles later in development, for the first time separating the maternal and zygotic requirements for Zelda. This demonstrates that highly regulated levels of Zelda activity are exclusively required for establishing the developmental program during the MZT. We propose that tightly regulated gene expression is essential to navigate the MZT and that failure to precisely execute this developmental program leads to embryonic lethality.AUTHOR SUMMARYFollowing fertilization, the one-celled zygote must be rapidly reprogrammed to enable the development of new, unique organism. During these initial stages of development there is little or no transcription of the zygotic genome, and maternally deposited products control this process. Among the essential maternal products are mRNAs that encode transcription factors required for preparing the zygotic genome for transcriptional activation. This ensures that there is a precisely coordinated hand-off from maternal to zygotic control. In Drosophila melanogaster, the transcription factor Zelda is essential for activating the zygotic genome and coupling this activation to the degradation of the maternally deposited products. Nonetheless, the mechanism by which Zelda functions remains unclear. Here we used Cas9-mediated genome engineering to determine the functional requirements for highly conserved domains within Zelda. We identified a domain required specifically for Zelda’s role in reprogramming the early embryonic genome, but not essential for its functions later in development. Surprisingly, this domain restricts the ability to Zelda to activate transcription. These data demonstrate that Zelda activity is tightly regulated, and we propose that precise regulation of both the timing and levels of genome activation is required for the embryo to successfully transition from maternal to zygotic control.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Rachel Paul ◽  
Guillaume Giraud ◽  
Katrin Domsch ◽  
Marilyne Duffraisse ◽  
Frédéric Marmigère ◽  
...  

AbstractFlying insects have invaded all the aerial space on Earth and this astonishing radiation could not have been possible without a remarkable morphological diversification of their flight appendages. Here, we show that characteristic spatial expression profiles and levels of the Hox genes Antennapedia (Antp) and Ultrabithorax (Ubx) underlie the formation of two different flight organs in the fruit fly Drosophila melanogaster. We further demonstrate that flight appendage morphology is dependent on specific Hox doses. Interestingly, we find that wing morphology from evolutionary distant four-winged insect species is also associated with a differential expression of Antp and Ubx. We propose that variation in the spatial expression profile and dosage of Hox proteins is a major determinant of flight appendage diversification in Drosophila and possibly in other insect species during evolution.


Sign in / Sign up

Export Citation Format

Share Document