scholarly journals A quantitative account of mammalian rod phototransduction with PDE6 dimeric activation: responses to bright flashes

Open Biology ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 190241
Author(s):  
Trevor D. Lamb ◽  
Timothy W. Kraft

We develop an improved quantitative model of mammalian rod phototransduction, and we apply it to the prediction of responses to bright flashes of light. We take account of the recently characterized dimeric nature of PDE6 activation, where the configuration of primary importance has two transducin molecules bound. We simulate the stochastic nature of the activation and shut-off reactions to generate the predicted kinetics of the active molecular species on the disc membrane surfaces, and then we integrate the differential equations for the downstream cytoplasmic reactions to obtain the predicted electrical responses. The simulated responses recover the qualitative form of bright-flash response families recorded from mammalian rod photoreceptors. Furthermore, they provide an accurate description of the relationship between the time spent in saturation and flash intensity, predicting the transition between first and second ‘dominant time constants’ to occur at an intensity around 5000 isomerizations per flash, when the rate of transducin activation is taken to be 1250 transducins s −1 per activated rhodopsin. This rate is consistent with estimates from light-scattering experiments, but is around fourfold higher than has typically been assumed in other studies. We conclude that our model and parameters provide a compelling description of rod photoreceptor bright-flash responses.

1998 ◽  
Vol 111 (1) ◽  
pp. 7-37 ◽  
Author(s):  
S. Nikonov ◽  
N. Engheta ◽  
E.N. Pugh

The kinetics of the dark-adapted salamander rod photocurrent response to flashes producing from 10 to 105 photoisomerizations (Φ) were investigated in normal Ringer's solution, and in a choline solution that clamps calcium near its resting level. For saturating intensities ranging from ∼102 to 104 Φ, the recovery phases of the responses in choline were nearly invariant in form. Responses in Ringer's were similarly invariant for saturating intensities from ∼103 to 104 Φ. In both solutions, recoveries to flashes in these intensity ranges translated on the time axis a constant amount (τc) per e-fold increment in flash intensity, and exhibited exponentially decaying “tail phases” with time constant τc. The difference in recovery half-times for responses in choline and Ringer's to the same saturating flash was 5–7 s. Above ∼104 Φ, recoveries in both solutions were systematically slower, and translation invariance broke down. Theoretical analysis of the translation-invariant responses established that τc must represent the time constant of inactivation of the disc-associated cascade intermediate (R*, G*, or PDE*) having the longest lifetime, and that the cGMP hydrolysis and cGMP-channel activation reactions are such as to conserve this time constant. Theoretical analysis also demonstrated that the 5–7-s shift in recovery half-times between responses in Ringer's and in choline is largely (4–6 s) accounted for by the calcium-dependent activation of guanylyl cyclase, with the residual (1–2 s) likely caused by an effect of calcium on an intermediate with a nondominant time constant. Analytical expressions for the dim-flash response in calcium clamp and Ringer's are derived, and it is shown that the difference in the responses under the two conditions can be accounted for quantitatively by cyclase activation. Application of these expressions yields an estimate of the calcium buffering capacity of the rod at rest of ∼20, much lower than previous estimates.


1998 ◽  
Vol 111 (1) ◽  
pp. 39-51 ◽  
Author(s):  
Peter D. Calvert ◽  
Theresa W. Ho ◽  
Yvette M. LeFebvre ◽  
Vadim Y. Arshavsky

Light adaptation in vertebrate photoreceptors is thought to be mediated through a number of biochemical feedback reactions that reduce the sensitivity of the photoreceptor and accelerate the kinetics of the photoresponse. Ca2+ plays a major role in this process by regulating several components of the phototransduction cascade. Guanylate cyclase and rhodopsin kinase are suggested to be the major sites regulated by Ca2+. Recently, it was proposed that cGMP may be another messenger of light adaptation since it is able to regulate the rate of transducin GTPase and thus the lifetime of activated cGMP phosphodiesterase. Here we report measurements of the rates at which the changes in Ca2+ and cGMP are followed by the changes in the rates of corresponding enzymatic reactions in frog rod outer segments. Our data indicate that there is a temporal hierarchy among reactions that underlie light adaptation. Guanylate cyclase activity and rhodopsin phosphorylation respond to changes in Ca2+ very rapidly, on a subsecond time scale. This enables them to accelerate the falling phase of the flash response and to modulate flash sensitivity during continuous illumination. To the contrary, the acceleration of transducin GTPase, even after significant reduction in cGMP, occurs over several tens of seconds. It is substantially delayed by the slow dissociation of cGMP from the noncatalytic sites for cGMP binding located on cGMP phosphodiesterase. Therefore, cGMP-dependent regulation of transducin GTPase is likely to occur only during prolonged bright illumination.


1995 ◽  
Vol 398 ◽  
Author(s):  
K. H. Wu ◽  
J.D. Shi ◽  
F. Yang ◽  
Z. J. Pu

ABSTRACTA new, quantitative model was developed to describe the martensite transformation kinetics of thermoelastic shape memory alloys (SMAs). In addition, a series of experiments were conducted to study the Kinetics of thermoelastic martensite transformation in four SMA systems: NiTi, NiTi-15at%Hf, NiTi-20at%Zr and NiMn-7.5at%Ti alloys. Comparisons between data of the kinetic of martensite transformation with the present theoretic models show that the proposed model is in good agreement and concurs with the experimental data. Also, a comparison of data from the proposed model with data from existing kinetic models, such as Liang's and Magee's [1,7], indicates that the proposed model can better describe the experimental data, including the relationship between dξ(T)/dT and ξ, and dξ(T)/dT and T.


eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
William N Grimes ◽  
Jacob Baudin ◽  
Anthony W Azevedo ◽  
Fred Rieke

Stimulus- or context-dependent routing of neural signals through parallel pathways can permit flexible processing of diverse inputs. For example, work in mouse shows that rod photoreceptor signals are routed through several retinal pathways, each specialized for different light levels. This light-level-dependent routing of rod signals has been invoked to explain several human perceptual results, but it has not been tested in primate retina. Here, we show, surprisingly, that rod signals traverse the primate retina almost exclusively through a single pathway – the dedicated rod bipolar pathway. Identical experiments in mouse and primate reveal substantial differences in how rod signals traverse the retina. These results require reevaluating human perceptual results in terms of flexible computation within this single pathway. This includes a prominent speeding of rod signals with light level – which we show is inherited directly from the rod photoreceptors themselves rather than from different pathways with distinct kinetics.


1952 ◽  
Vol 25 (1) ◽  
pp. 21-32 ◽  
Author(s):  
W. C. Warner ◽  
J. Reid Shelton

Abstract Three olefins were oxidized in the liquid phase with molecular oxygen to determine the kinetics of the oxidation reactions and the relationship to oxidation of rubber. The instantaneous rate of oxidation was found to be related to the analytically determined olefin and peroxide concentrations by the equation : Rate=k (unreacted olefin)(peroxide), where rate equals moles of oxygen per mole of original olefin per hour and the parentheses represent molarities. Presence of a phenyl group was found to affect k, but only in a minor way, indicating that the same fundamental kinetic mechanism applies in both aromatic and aliphatic olefins. The data are consistent with the general kinetic mechanism of Bolland involving oxygen attack at the alpha-methylenic group. However, it appears probable that initial oxygen attack can also occur at the double bond, resulting in the formation of a peroxide biradical, which may then react with other olefin molecules, initiating the usual chain reaction mechanism.


1990 ◽  
Vol 04 (03) ◽  
pp. 201-209
Author(s):  
A. GIEROSZYŃSKI

It was found that OSEE kinetics from electron bombarded cryosolidified NaCl solution, depend on electric charging of the sample surface. It was shown that from the relationship between the maximum surface potential and the parameters of OSEE kinetic, intensities of electric fields in the emitter layer could be estimated. It is supposed that nonhomogeneous electric fields existing in the emitter surface region, influence the emission levels responsible for the course of OSEE kinetics.


2021 ◽  
Vol 1022 ◽  
pp. 181-193
Author(s):  
Dmitry M. Rozhkov ◽  
Evgenia V. Eltoshkina ◽  
Petr I. Ilyin ◽  
Olga A. Svirbutovich

The article presents the results of experimental studies to determine the relationship between the electrolysis modes and the properties of electroplating coatings for mathematical modeling of the dynamics of the electrolytic process (MDEP), described by a system of ordinary differential equations due to the complex relationship of the kinetics of chemical reactions, hydrodynamics and mass transfer in the electrolyte flow, the kinematics of electrode plates, and the influence of the electric field of the "anode-cathode" pair on all these processes. At the same time, the experimental base was a series of full-scale experiments to restore the seats of the root supports of cylinder blocks with electroplated coatings. The final result of the research is the procedure for constructing an optimal resource-saving mode of electroplating, which is a zinc-iron alloy.


2021 ◽  
Author(s):  
Aydın Cihanoğlu ◽  
Jessica Schiffman ◽  
Sacide Alsoy Altinkaya

Herein, we report a controllable pathway to accelerate the polymerization kinetics of dopamine using ultrasound as a trigger. The use of ultrasound was demonstrated to dramatically accelerate the slow liquid...


2020 ◽  
Vol 993 ◽  
pp. 447-456
Author(s):  
Xiao Jun Zhang ◽  
Kun Yuan Gao ◽  
Xiu Hua Hu ◽  
Yu Sheng Ding ◽  
Guo Zhan Wang ◽  
...  

The composition and microstructure of intermetallic compounds (IMC) at the interface of aluminum(AA4343)-stainless steel(SUS316) were studied upon annealing at 550°C for 1h to 20h and at 610°C for 15min to 10h by means of optical microscope(OM) , scanning electron microscope (SEM) with energy dispersive system(EDS) and transmission Electron Microscopy (TEM). The results showed that the IMC was of 4.3μm to 36.1μm thick during heat treatment at 550°C for 1h to 20h, and the IMC contained Al-Fe-Si-Cr-Ni-Mo and Al-Fe-Si -Ni. During annealing at 610°C for 15min to 5h, the thickness of IMC was 31.2 μm to 208 μm, and the IMC were mainly of η-Fe2Al5 and τ10- Al4Fe1.7Si at 550°C for 10h. As the annealing time extended to 10h, natural delamination occurred at the interface between the aluminum alloy layer and IMC layer. The growth kinetics analysis showed that the relationship between the thickness of IMC “X” and time “t” followed the relational equation X=(kt)n. For AA4343(solid) - SUS316(solid), n was 1/2, and the growth constant k = 1.9×10-13m2/s at annealing temperature of 550 °C. When the temperature was 610°C, AA4343 - SUS316 was a liquid-solid contact reaction, n was 1, the growth constant k=1.45×10-8m/s.


Sign in / Sign up

Export Citation Format

Share Document