scholarly journals Immune activation by a multigene family of lectins with variable tandem repeats in oriental river prawn ( Macrobrachium nipponense )

Open Biology ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 200141
Author(s):  
Ying Huang ◽  
Xin Huang ◽  
Xuming Zhou ◽  
Jialin Wang ◽  
Ruidong Zhang ◽  
...  

Genomic regions with repeated sequences are unstable and prone to rapid DNA diversification. However, the role of tandem repeats within the coding region is not fully characterized. Here, we have identified a new hypervariable C-type lectin gene family with different numbers of tandem repeats (Rlecs; R means repeat) in oriental river prawn ( Macrobrachium nipponense ) . Two types of repeat units (33 or 30 bp) are identified in the second exon, and the number of repeat units vary from 1 to 9. Rlecs can be classified into 15 types through phylogenetic analysis. The amino acid sequences in the same type of Rlec are highly conservative outside the repeat regions. The main differences among the Rlec types are evident in exon 5. A variable number of tandem repeats in Rlecs may be produced by slip mispairing during gene replication. Alternative splicing contributes to the multiplicity of forms in this lectin gene family, and different types of Rlecs vary in terms of tissue distribution, expression quantity and response to bacterial challenge. These variations suggest that Rlecs have functional diversity. The results of experiments on sugar binding, microbial inhibition and clearance, regulation of antimicrobial peptide gene expression and prophenoloxidase activation indicate that the function of Rlecs with the motif of YRSKDD in innate immunity is enhanced when the number of tandem repeats increases. Our results suggest that Rlecs undergo gene expansion through gene duplication and alternative splicing, which ultimately leads to functional diversity.

2018 ◽  
Vol 10 (8) ◽  
pp. 56
Author(s):  
Goitseone Malambane ◽  
Hisashi Tsujimoto ◽  
Kinya Akashi

Ascorbate peroxidase (APX) plays an important role in detoxifying reactive oxygen species under environmental stress. Although previous work in drought-tolerant wild watermelon has shown an increase in chloroplast APX enzyme activity under drought, molecular entities of APX have remained uncharacterized. In this study, structure and transcriptional regulation of the APX gene family in watermelon were characterized. Five APX genes, designated as CLAPX1 to CLAPX5, were identified from watermelon genome. The mRNA alternative splicing was suggested for CLAPX5, which generated two distinct deduced amino acid sequences at their C-terminus, in resemblance to a reported alternative splicing of chloroplast APXs in pumpkin. This observation suggests that two isoenzymes for stromal and thylakoid-bound APXs may be generated from the CLAPX5 gene. Phylogenetic analysis classified CLAPX isoenzymes into three clades, i.e., chloroplast, microbody, and cytosolic. Physiological analyses of wild watermelon under drought showed a decline in stomatal conductance and CO2 assimilation rate, and a significant increase in the enzyme activities of both chloroplast and cytosolic APXs. Profiles of mRNA abundance during drought were markedly different among CLAPX genes, suggesting distinct transcriptional regulation for the APX isoenzymes. Up-regulation of CLAPX5-I and CLAPX5-II was observed at the early phase of drought stress, which was temporally correlated with the observed increase in chloroplast APX enzyme activity, suggesting that transcriptional up-regulation of the CLAPX5 gene may contribute to the fortification of chloroplast APX activity under drought. Our study has provided an insight into the functional significance of the CLAPX gene family in the drought tolerance mechanism in this plant.


2021 ◽  
Vol 52 (1) ◽  
Author(s):  
Ying Huang ◽  
Qian Ren

AbstractThe Hippo signalling pathway plays a vital role in organ size control, cell proliferation, apoptosis, and immune regulation. In this study, a Hippo homologue with three isoforms (named MnHippo-a, MnHippo-b, and MnHippo-c) was isolated and characterized for the first time from the freshwater prawn Macrobrachium nipponense. The deduced amino acid sequences of MnHippo-a (698 aa), MnHippo-b (688 aa), and MnHippo-c (656 aa) were highly similar, and they all contained an N-terminal S_TKc (serine/threonine protein kinase catalytic) domain and a C-terminal Mst1_SARAH (Sav/Rassf/Hpo) domain. MnHippo-a and MnHippo-c were derived from alternative splicing. Phylogenetic analysis was performed, and the results revealed that MnHippo was a member of the clade containing STPK4 and Hippo of Penaeus vannamei. The expression distribution showed that MnHippo was constitutively expressed in various tissues of uninfected prawns and highly expressed in the hepatopancreas and intestine. In prawns challenged with Vibrio parahaemolyticus and Staphylococcus aureus, the expression of MnHippo in haemocytes was significantly upregulated. Furthermore, in MnHippo-knockdown prawns injected with V. parahaemolyticus or S. aureus, the transcription levels of five antimicrobial peptides were downregulated. MnHippo silencing weakened the clearance of V. parahaemolyticus and S. aureus in prawns. The survival rate of the MnHippo-dsRNA group was obviously decreased from 2 to 6 days post-injection with V. parahaemolyticus or S. aureus. Hence, MnHippo might be involved in the antibacterial immune defence of M. nipponense.


1993 ◽  
Vol 69 (04) ◽  
pp. 351-360 ◽  
Author(s):  
Masahiro Murakawa ◽  
Takashi Okamura ◽  
Takumi Kamura ◽  
Tsunefumi Shibuya ◽  
Mine Harada ◽  
...  

SummaryThe partial amino acid sequences of fibrinogen Aα-chains from five mammalian species have been inferred by means of the polymerase chain reaction (PCR). From the genomic DNA of the rhesus monkey, pig, dog, mouse and Syrian hamster, the DNA fragments coding for α-C domains in the Aα-chains were amplified and sequenced. In all species examined, four cysteine residues were always conserved at the homologous positions. The carboxy- and amino-terminal portions of the α-C domains showed a considerable homology among the species. However, the sizes of the middle portions, which corresponded to the internal repeat structures, showed an apparent variability because of several insertions and/or deletions. In the rhesus monkey, pig, mouse and Syrian hamster, 13 amino acid tandem repeats fundamentally similar to those in humans and the rat were identified. In the dog, however, tandem repeats were found to consist of 18 amino acids, suggesting an independent multiplication of the canine repeats. The sites of the α-chain cross-linking acceptor and α2-plasmin inhibitor cross-linking donor were not always evolutionally conserved. The arginyl-glycyl-aspartic acid (RGD) sequence was not found in the amplified region of either the rhesus monkey or the pig. In the canine α-C domain, two RGD sequences were identified at the homologous positions to both rat and human RGD S. In the Syrian hamster, a single RGD sequence was found at the same position to that of the rat. Triplication of the RGD sequences was seen in the murine fibrinogen α-C domain around the homologous site to the rat RGDS sequence. These findings are of some interest from the point of view of structure-function and evolutionary relationships in the mammalian fibrinogen Aα-chains.


Genetics ◽  
1999 ◽  
Vol 153 (2) ◽  
pp. 753-762
Author(s):  
Günther E Roth ◽  
Sigrid Wattler ◽  
Hartmut Bornschein ◽  
Michael Lehmann ◽  
Günter Korge

Abstract The Drosophila melanogaster gene Sgs-1 belongs to the secretion protein genes, which are coordinately expressed in salivary glands of third instar larvae. Earlier analysis had implied that Sgs-1 is located at the 25B2-3 puff. We cloned Sgs-1 from a YAC covering 25B2-3. Despite using a variety of vectors and Escherichia coli strains, subcloning from the YAC led to deletions within the Sgs-1 coding region. Analysis of clonable and unclonable sequences revealed that Sgs-1 mainly consists of 48-bp tandem repeats encoding a threonine-rich protein. The Sgs-1 inserts from single λ clones are heterogeneous in length, indicating that repeats are eliminated. By analyzing the expression of Sgs-1/lacZ fusions in transgenic flies, cis-regulatory elements of Sgs-1 were mapped to lie within 1 kb upstream of the transcriptional start site. Band shift assays revealed binding sites for the transcription factor fork head (FKH) and the factor secretion enhancer binding protein 3 (SEBP3) at positions that are functionally relevant. FKH and SEBP3 have been shown previously to be involved in the regulation of Sgs-3 and Sgs-4. Comparison of the levels of steady state RNA and of the transcription rates for Sgs-1 and Sgs-1/lacZ reporter genes indicates that Sgs-1 RNA is 100-fold more stable than Sgs-1/lacZ RNA. This has implications for the model of how Sgs transcripts accumulate in late third instar larvae.


Sign in / Sign up

Export Citation Format

Share Document