scholarly journals Expression and function of PDGF-C in development and stem cells

Open Biology ◽  
2021 ◽  
Vol 11 (12) ◽  
Author(s):  
Yi Tian ◽  
Ying Zhan ◽  
Qin Jiang ◽  
Weisi Lu ◽  
Xuri Li

Platelet-derived growth factor C (PDGF-C) is a relatively new member of the PDGF family, discovered nearly 20 years after the finding of platelet-derived growth factor A (PDGF-A) and platelet-derived growth factor B (PDGF-B). PDGF-C is generally expressed in most organs and cell types. Studies from the past 20 years have demonstrated critical roles of PDGF-C in numerous biological, physiological and pathological processes, such as development, angiogenesis, tumour growth, tissue remodelling, wound healing, atherosclerosis, fibrosis, stem/progenitor cell regulation and metabolism. Understanding PDGF-C expression and activities thus will be of great importance to various research disciplines. In this review, however, we mainly discuss the expression and functions of PDGF-C and its receptors in development and stem cells.

2020 ◽  
Vol 319 (4) ◽  
pp. C675-C693
Author(s):  
Kalpaj R. Parekh ◽  
Janna Nawroth ◽  
Albert Pai ◽  
Shana M. Busch ◽  
Christiana N. Senger ◽  
...  

The ability to replace defective cells in an airway with cells that can engraft, integrate, and restore a functional epithelium could potentially cure a number of lung diseases. Progress toward the development of strategies to regenerate the adult lung by either in vivo or ex vivo targeting of endogenous stem cells or pluripotent stem cell derivatives is limited by our fundamental lack of understanding of the mechanisms controlling human lung development, the precise identity and function of human lung stem and progenitor cell types, and the genetic and epigenetic control of human lung fate. In this review, we intend to discuss the known stem/progenitor cell populations, their relative differences between rodents and humans, their roles in chronic lung disease, and their therapeutic prospects. Additionally, we highlight the recent breakthroughs that have increased our understanding of these cell types. These advancements include novel lineage-traced animal models and single-cell RNA sequencing of human airway cells, which have provided critical information on the stem cell subtypes, transition states, identifying cell markers, and intricate pathways that commit a stem cell to differentiate or to maintain plasticity. As our capacity to model the human lung evolves, so will our understanding of lung regeneration and our ability to target endogenous stem cells as a therapeutic approach for lung disease.


2019 ◽  
Vol 67 (11) ◽  
pp. 825-844
Author(s):  
Eva K. Hejbøl ◽  
Mohammad A. Hajjaj ◽  
Ole Nielsen ◽  
Henrik D. Schrøder

There is a growing recognition that myogenic stem cells are influenced by their microenvironment during regeneration. Several interstitial cell types have been described as supportive for myoblasts. In this role, both the pericyte as a possible progenitor for mesenchymal stem cells, and interstitial cells in the endomysium have been discussed. We have applied immunohistochemistry on normal and pathological human skeletal muscle using markers for pericytes, or progenitor cells and found a cell type co-expressing CD10, CD34, CD271, and platelet-derived growth factor receptor α omnipresent in the endomysium. The marker profile of these cells changed dynamically in response to muscle damage and atrophy, and they proliferated in response to damage. The cytology and expression profile of the CD10+ cells indicated a capacity to participate in myogenesis. Both morphology and indicated function of these cells matched properties of several previously described interstitial cell types. Our study suggests a limited number of cell types that could embrace many of these described cell types. Our study indicate that the CD10+, CD34+, CD271+, and platelet-derived growth factor receptor α+ cells could have a supportive role in human muscle regeneration, and thus the mechanisms by which they exert their influence could be implemented in stem cell therapy.


2010 ◽  
Vol 427 (1) ◽  
pp. 29-40 ◽  
Author(s):  
Stephen G. Ball ◽  
Christopher Bayley ◽  
C. Adrian Shuttleworth ◽  
Cay M. Kielty

Using human MSCs (mesenchymal stem cells) lacking VEGF (vascular endothelial growth factor) receptors, we show that the pro-angiogenic receptor neuropilin-1 associates with phosphorylated PDGFRs [PDGF (platelet-derived growth factor) receptors], thereby regulating cell signalling, migration, proliferation and network assembly. Neuropilin-1 co-immunoprecipitated and co-localized with phosphorylated PDGFRs in the presence of growth factors. Neuropilin-1 knockdown blocked PDGF-AA-induced PDGFRα phosphorylation and migration, reduced PDGF-BB-induced PDGFRβ activation and migration, blocked VEGF-A activation of both PDGFRs, and attenuated proliferation. Neuropilin-1 prominently co-localized with both PDGFRs within MSC networks assembled in Matrigel™ and in the chorioallantoic membrane vasculature microenvironment, and its knockdown grossly disrupted network assembly and decreased PDGFR signalling. Thus neuropilin-1 regulates MSCs by forming ligand-specific receptor complexes that direct PDGFR signalling, especially the PDGFRα homodimer. This receptor cross-talk may control the mobilization of MSCs in neovascularization and tissue remodelling.


2021 ◽  
Vol 8 ◽  
Author(s):  
Wenjie Hu ◽  
Ruting Zhang ◽  
Wei Chen ◽  
Dongyue Lin ◽  
Kun Wei ◽  
...  

Platelet-derived growth factor C (PDGF-C) is a member of the PDGF/VEGF (vascular endothelial growth factor) family, which includes proteins that are well known for their mitogenic effects on multiple cell types. Glycosylation is one of the most important forms of posttranslational modification that has a significant impact on secreted and membrane proteins. Glycosylation has many well-characterized roles in facilitating protein processing and contributes to appropriate folding, conformation, distribution, and stability of proteins that are synthesized intracellularly in the endoplasmic reticulum (ER) and Golgi apparatus. Although the general process and functions of glycosylation are well documented, there are most likely others yet to be discovered, as the glycosylation of many potential substrates has not been characterized. In this study, we report that the PDGF-C protein is glycosylated at three sites, including Asn25, Asn55, and Asn254. However, we found that mutations at any of these sites do not affect the protein expression or secretion. Similarly, disruption of PDGF-C glycosylation had no impact on its progression through the ER and Golgi apparatus. However, the introduction of a mutation at Asn254 (N254 A) prevents the activation of full-length PDGF-C and its capacity for signaling via the PDGF receptor. Our findings reveal that glycosylation affects PDGF-C activation rather than the protein synthesis or processing. This study characterizes a crucial modification of the PDGF-C protein, and may shed new light on the process and function of glycosylation.


Author(s):  
Prithiv K R Kumar

Renal failure is a major health problem. The mortality rate remain high despite of several therapies. The most complex of the renal issues are solved through stem cells. In this review, different mechanism for cure of chronic kidney injury along with cell engraftment incorporated into renal structures will be analysed. Paracrine activities of embryonic or induced Pluripotent stem cells are explored on the basis of stem cell-induced kidney regeneration. Several experiments have been conducted to advance stem cells to ensure the restoration of renal functions. More vigour and organised protocols for delivering stem cells is a possibility for advancement in treatment of renal disease. Also there is a need for pressing therapies to replicate the tissue remodelling and cellular repair processes suitable for renal organs. Stem cells are the undifferentiated cells that have the ability to multiply into several cell types. In vivo experiments on animal’s stem cells have shown significant improvements in the renal regeneration and functions of organs. Nevertheless more studies show several improvements in the kidney repair due to stem cell regeneration.


Sign in / Sign up

Export Citation Format

Share Document