scholarly journals An advanced shape-fitting algorithm applied to quadrupedal mammals: improving volumetric mass estimates

2015 ◽  
Vol 2 (8) ◽  
pp. 150302 ◽  
Author(s):  
Charlotte A. Brassey ◽  
James D. Gardiner

Body mass is a fundamental physical property of an individual and has enormous bearing upon ecology and physiology. Generating reliable estimates for body mass is therefore a necessary step in many palaeontological studies. Whilst early reconstructions of mass in extinct species relied upon isolated skeletal elements, volumetric techniques are increasingly applied to fossils when skeletal completeness allows. We apply a new ‘alpha shapes’ ( α -shapes) algorithm to volumetric mass estimation in quadrupedal mammals. α -shapes are defined by: (i) the underlying skeletal structure to which they are fitted; and (ii) the value α , determining the refinement of fit. For a given skeleton, a range of α -shapes may be fitted around the individual, spanning from very coarse to very fine. We fit α -shapes to three-dimensional models of extant mammals and calculate volumes, which are regressed against mass to generate predictive equations. Our optimal model is characterized by a high correlation coefficient and mean square error ( r 2 =0.975, m.s.e.=0.025). When applied to the woolly mammoth ( Mammuthus primigenius ) and giant ground sloth ( Megatherium americanum ), we reconstruct masses of 3635 and 3706 kg, respectively. We consider α -shapes an improvement upon previous techniques as resulting volumes are less sensitive to uncertainties in skeletal reconstructions, and do not require manual separation of body segments from skeletons.

2013 ◽  
Vol 05 (01) ◽  
pp. 1350002 ◽  
Author(s):  
I. Benedetti ◽  
F. Barbe

A survey of recent contributions on three-dimensional grain-scale mechanical modelling of polycrystalline materials is given in this work. The analysis of material micro-structures requires the generation of reliable micro-morphologies and affordable computational meshes as well as the description of the mechanical behavior of the elementary constituents and their interactions. The polycrystalline microstructure is characterized by the topology, morphology and crystallographic orientations of the individual grains and by the grain interfaces and microstructural defects, within the bulk grains and at the inter-granular interfaces. Their analysis has been until recently restricted to two-dimensional cases, due to high computational requirements. In the last decade, however, the wider affordability of increased computational capability has promoted the development of fully three-dimensional models. In this work, different aspects involved in the grain-scale analysis of polycrystalline materials are considered. Different techniques for generating artificial micro-structures, ranging from highly idealized to experimentally based high-fidelity representations, are briefly reviewed. Structured and unstructured meshes are discussed. The main strategies for constitutive modelling of individual bulk grains and inter-granular interfaces are introduced. Some attention has also been devoted to three-dimensional multiscale approaches and some established and emerging applications have been discussed.


2016 ◽  
Vol 283 (1842) ◽  
pp. 20161742 ◽  
Author(s):  
Ian C. Enochs ◽  
Derek P. Manzello ◽  
Graham Kolodziej ◽  
Sam H. C. Noonan ◽  
Lauren Valentino ◽  
...  

Ocean acidification (OA) impacts the physiology of diverse marine taxa; among them corals that create complex reef framework structures. Biological processes operating on coral reef frameworks remain largely unknown from naturally high-carbon-dioxide (CO 2 ) ecosystems. For the first time, we independently quantified the response of multiple functional groups instrumental in the construction and erosion of these frameworks (accretion, macroboring, microboring, and grazing) along natural OA gradients. We deployed blocks of dead coral skeleton for roughly 2 years at two reefs in Papua New Guinea, each experiencing volcanically enriched CO 2 , and employed high-resolution micro-computed tomography (micro-CT) to create three-dimensional models of changing skeletal structure. OA conditions were correlated with decreased calcification and increased macroboring, primarily by annelids, representing a group of bioeroders not previously known to respond to OA. Incubation of these blocks, using the alkalinity anomaly methodology, revealed a switch from net calcification to net dissolution at a pH of roughly 7.8, within Intergovernmental Panel on Climate Change's (IPCC) predictions for global ocean waters by the end of the century. Together these data represent the first comprehensive experimental study of bioerosion and calcification from a naturally high-CO 2 reef ecosystem, where the processes of accelerated erosion and depressed calcification have combined to alter the permanence of this essential framework habitat.


Author(s):  
Sinan Filiz ◽  
O. Burak Ozdoganlar

Part I of this work presents a combined one-dimensional/three-dimensional approach for obtaining a unified model for the dynamics of micro- and macro-drills. To increase the numerical efficiency of the model, portions of the drill with circular cross-section (shank, extension, and tapered sections) are modeled using one-dimensional beam models without compromising model accuracy. A three-dimensional model is used for an accurate representation of the fluted section, considering the actual geometry with the pretwisted shape and axially varying (nonaxisymmetric) cross-section. The actual cross-section of the drills is incorporated to the model through a polynomial mapping while the pretwist effect is captured by defining a rotating reference frame. The boundary-value problem for both one- and three-dimensional models are derived using a variational approach, based on the extended Hamilton’s principle, and are subsequently solved by applying the spectral-Tchebychev technique. A component-mode synthesis is used for connecting the individual sections to obtain the dynamic model for the entire drill. Convergence of the model is studied by varying the number of polynomials for each section. The experimental validation of the model is included in Part II for both macro- and micro-drills. Also included in Part II is an analysis of drill dynamics for varying drill-geometry parameters and axial (thrust) force.


Shape is a critical physical property of normal and artificial three-D images that describes their outside appearances. Understanding differences among shapes and displaying the inconstancy inside and outside the shape classes are considered for shape analysis, and are the major issues in numerous applications, from normal image visualization to medical imaging. During diagnosis in medical image processing it is impossible to analyze the diseased areas some time from three-D images. So for the purpose of diagnosing the diseased areas of three-D image, medical experts need two-D images. This paper addresses the overhaul of three dimensional models from two-D images. In the initial step the image is segmented using level set method. Later segmented image is extracted and registered for overhaul of three dimensional images using metamorphosis and fabric growing methods. The practical result shows the implementation of the suggested method.


Author(s):  
H. Takahashi ◽  
H. Date ◽  
S. Kanai ◽  
K. Yasutake

Abstract. Laser scanning technology is useful to create accurate three-dimensional models of indoor environments for applications such as maintenance, inspection, renovation, and simulations. In this paper, a detection method of indoor attached equipment such as windows, lightings, and fire alarms, from TLS point clouds, is proposed. In order to make the method robust against to the lack of points of equipment surface, a footprint of the equipment is used for detection, because the entire or a part of the footprint boundary shapes explicitly appear as the boundary of base surfaces, i.e. walls for windows, and ceilings for lightings and fire alarms. In the method, first, base surface regions are extracted from given TLS point clouds of indoor environments. Then, footprint boundary points are detected from the region boundary points. Finally, target equipment is detected by fitting or voting using given target footprint shapes. The features of our method are footprint boundary point extraction considering occlusions, shape fitting with adaptive parameters based on point intervals, and robust shape detection by voting from multiple footprint boundary candidates. The effectiveness of the proposed method is evaluated using TLS point clouds.


2012 ◽  
Vol 21 (2) ◽  
pp. 139-144 ◽  
Author(s):  
L. Gask ◽  
P. Coventry

Within mental health care, ‘person-centredness’ has been generally interpreted to convey a holistic approach with an attitude of respect for the individual and his/her unique experience and needs. Although it has been possible to demonstrate that professionals can acquire such skills through training, the impact on clinical outcomes has been more difficult to demonstrate in randomized controlled trials. Indeed what is becoming increasingly apparent in the literature is the need to acknowledge and address the degree of complexity that exists within the health care system that militates against achieving satisfactory implementation and outcomes from person-centred mental health care. In addressing this, we must develop and work with more sophisticated and three-dimensional models of ‘patient-centredness’ that engage with not only what happens in the consulting room (the relationship between individual service users and healthcare professionals), but also addresses the problems involved in achieving person-centredness through modifying the way that services and organizations work, and finally by engaging families and communities in the delivery of health care. A truly meaningful concept of ‘people-centredness’ encompasses how the views of the population are taken into consideration not only in healthcare but also in health and social care policy, and wider society too.


2019 ◽  
Vol 11 (23) ◽  
pp. 2730
Author(s):  
González-Gómez ◽  
Iglesias ◽  
Rodríguez-Solano ◽  
Castro

Existing roads require periodic evaluation in order to ensure safe transportation. Estimations of the available sight distance (ASD) are fundamental to make sure motorists have sufficient visibility to perform basic driving tasks. Mobile LiDAR Systems (MLS) can provide these evaluations with accurate three-dimensional models of the road and surroundings. Similarly, Geographic Information System (GIS) tools have been employed to obtain ASD. Due to the fact that widespread GIS formats used to store digital surface models handle elevation as an attribute of location, the presented methodology has separated the representation of ground and aboveground elements. The road geometry and surrounding ground are stored in digital terrain models (DTM). Correspondingly, abutting vegetation, manmade structures, road assets and other roadside elements are stored in 3D objects and placed on top of the DTM. Both the DTM and 3D objects are accurately obtained from a denoised and classified LiDAR point cloud. Based on the consideration that roadside utilities and most manmade structures are well-defined geometric elements, some visual obstructions are extracted and/or replaced with 3D objects from online warehouses. Different evaluations carried out with this method highlight the tradeoff between the accuracy of the estimations, performance and geometric complexity as well as the benefits of the individual consideration of road assets.


Author(s):  
B. Carragher ◽  
M. Whittaker

Techniques for three-dimensional reconstruction of macromolecular complexes from electron micrographs have been successfully used for many years. These include methods which take advantage of the natural symmetry properties of the structure (for example helical or icosahedral) as well as those that use single axis or other tilting geometries to reconstruct from a set of projection images. These techniques have traditionally relied on a very experienced operator to manually perform the often numerous and time consuming steps required to obtain the final reconstruction. While the guidance and oversight of an experienced and critical operator will always be an essential component of these techniques, recent advances in computer technology, microprocessor controlled microscopes and the availability of high quality CCD cameras have provided the means to automate many of the individual steps.During the acquisition of data automation provides benefits not only in terms of convenience and time saving but also in circumstances where manual procedures limit the quality of the final reconstruction.


1975 ◽  
Vol 39 (8) ◽  
pp. 544-546
Author(s):  
HL Wakkerman ◽  
GS The ◽  
AJ Spanauf

2010 ◽  
Vol 3 (2) ◽  
pp. 156-180 ◽  
Author(s):  
Renáta Gregová ◽  
Lívia Körtvélyessy ◽  
Július Zimmermann

Universals Archive (Universal #1926) indicates a universal tendency for sound symbolism in reference to the expression of diminutives and augmentatives. The research ( Štekauer et al. 2009 ) carried out on European languages has not proved the tendency at all. Therefore, our research was extended to cover three language families – Indo-European, Niger-Congo and Austronesian. A three-step analysis examining different aspects of phonetic symbolism was carried out on a core vocabulary of 35 lexical items. A research sample was selected out of 60 languages. The evaluative markers were analyzed according to both phonetic classification of vowels and consonants and Ultan's and Niewenhuis' conclusions on the dominance of palatal and post-alveolar consonants in diminutive markers. Finally, the data obtained in our sample languages was evaluated by means of a three-dimensional model illustrating the place of articulation of the individual segments.


Sign in / Sign up

Export Citation Format

Share Document