scholarly journals Optical quantum confinement and photocatalytic properties in two-, one- and zero-dimensional nanostructures

2018 ◽  
Vol 5 (9) ◽  
pp. 180387 ◽  
Author(s):  
T. Edvinsson

Low-dimensional nanomaterials have been explored extensively in the last decades, partly fuelled by the new possibilities for tuning and controlling their electronic properties. In a broader perspective within catalysis, two-, one- and zero-dimensional (2D, 1D and 0D) inorganic nanomaterials represent a bridge between the selectivity of molecular catalysts and the high performance and stability of inorganic catalysts. As a consequence of the low dimensions, higher surface areas are obtained but also introduce new physics and increased tuneability of the electronic states in the nanostructured system. Herein, we derive the commonly used equations for optical transitions and carrier confinement in semiconductors and discuss their effect on the optical and photocatalytic properties of direct band and indirect band gap materials. In particular, the physical properties of the optical and photocatalytic properties of Fe 2 O 3 and ZnO will be used to exemplify the effects of the low dimensionality. Carrier confinement effects with changes in the density of states, band gap/shift of band edges will be outlined together with their effects on the tuneability of the material and their wider application as photocatalytic materials.

2021 ◽  
Vol 11 (8) ◽  
pp. 3530
Author(s):  
Yuki Yamada ◽  
Takeshi Yoshimura ◽  
Atsushi Ashida ◽  
Norifumi Fujimura ◽  
Daisuke Kiriya

A direct band gap nature in semiconducting materials makes them useful for optical devices due to the strong absorption of photons and their luminescence properties. Monolayer transition metal dichalcogenides (TMDCs) have received significant attention as direct band gap semiconductors and a platform for optical applications and physics. However, bilayer or thicker layered samples exhibit an indirect band gap. Here, we propose a method that converts the indirect band gap nature of bilayer MoS2, one of the representative TMDCs, to a direct band gap nature and enhances the photoluminescence (PL) intensity of bilayer MoS2 dramatically. The procedure combines UV irradiation with superacid molecular treatment on bilayer MoS2. UV irradiation induces the conversion of the PL property with an indirect band gap to a direct band gap situation in bilayer MoS2 when the interaction between the top and bottom layers is weakened by a sort of misalignment between them. Furthermore, the additional post-superacid treatment dramatically enhances the PL intensity of bilayer MoS2 by a factor of 700×. However, this procedure is not effective for a conventional bilayer sample, which shows no PL enhancement. From these results, the separated top layer would show a strong PL from the superacid treatment. The monolayer-like top layer is physically separated from the substrate by the intermediate bottom MoS2 layer, and this situation would be preferable for achieving a strong PL intensity. This finding will be useful for controlling the optoelectronic properties of thick TMDCs and the demonstration of high-performance optoelectronic devices.


Electronics ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 988
Author(s):  
Chrysa Aivalioti ◽  
Alexandros Papadakis ◽  
Emmanouil Manidakis ◽  
Maria Kayambaki ◽  
Maria Androulidaki ◽  
...  

Nickel oxide (NiO) is a p-type oxide and nitrogen is one of the dopants used for modifying its properties. Until now, nitrogen-doped NiO has shown inferior optical and electrical properties than those of pure NiO. In this work, we present nitrogen-doped NiO (NiO:N) thin films with enhanced properties compared to those of the undoped NiO thin film. The NiO:N films were grown at room temperature by sputtering using a plasma containing 50% Ar and 50% (O2 + N2) gases. The undoped NiO film was oxygen-rich, single-phase cubic NiO, having a transmittance of less than 20%. Upon doping with nitrogen, the films became more transparent (around 65%), had a wide direct band gap (up to 3.67 eV) and showed clear evidence of indirect band gap, 2.50–2.72 eV, depending on %(O2-N2) in plasma. The changes in the properties of the films such as structural disorder, energy band gap, Urbach states and resistivity were correlated with the incorporation of nitrogen in their structure. The optimum NiO:N film was used to form a diode with spin-coated, mesoporous on top of a compact, TiO2 film. The hybrid NiO:N/TiO2 heterojunction was transparent showing good output characteristics, as deduced using both I-V and Cheung’s methods, which were further improved upon thermal treatment. Transparent NiO:N films can be realized for all-oxide flexible optoelectronic devices.


2013 ◽  
Vol 652-654 ◽  
pp. 527-531 ◽  
Author(s):  
A.N. Alias ◽  
T.I. Tunku Kudin ◽  
Z.M. Zabidi ◽  
M.K. Harun ◽  
Ab Malik Marwan Ali ◽  
...  

The optical absorption spectra of blended poly (N-carbazole) (PVK) with polyvinylpyrrolidone (PVP) in various compositions are investigated. A doctor blade technique was used to coat the blended polymer on a quartz substrate. The electronic parameters such as absorption edge (Ee), allowed direct band gap (Ed), allowed indirect band gap (Ei), Urbach edge (Eu) and steepness parameter (γ) were calculated using Tauc/Davis-Mott Model. The results reveal that the Ee, Ed and Ei increase with increasing of PVP ratio. There also have variation changing in Urbach energy and steepness parameter.


RSC Advances ◽  
2019 ◽  
Vol 9 (72) ◽  
pp. 42245-42251
Author(s):  
Haoran Tu ◽  
Jing Zhang ◽  
Zexuan Guo ◽  
Chunyan Xu

Hydrogenation can open the band gap of 2D tetragonal silicene, α-SiH is semiconductors with a direct band gap of 2.436 eV whereas β-SiH is indirect band gap of 2.286 eV. The band gap of α-SiH, β-SiH and γ-SiH can be modulated via biaxial strain.


2009 ◽  
Vol 23 (23) ◽  
pp. 2783-2789 ◽  
Author(s):  
ARUN GAUR ◽  
D. K. SHARMA ◽  
K. S. SINGH ◽  
NAGESHWAR SINGH

Nanosecond laser pulses have employed the photoconductive Z-scan technique. Photoconductivity traces measured by moving the sample across the laser beam waist were used for measuring two and three-photon absorption processes. The value of the three-photon absorption coefficient β3=9.6×10-10 cm 3/ GW 2 in the case of direct, and 8.96×10-12 cm 3/ GW 2 and 5.0×10-12 cm 3/ GW 2 in the case of indirect band gap crystals have been estimated from a comparison of traces measured by exciting the sample with the first and second harmonics of Nd : YAG laser. The low value of β3 in the case of indirect band gap crystals compared to direct band gap crystals is attributed to phonon-assisted transitions.


2013 ◽  
Vol 27 (09) ◽  
pp. 1350061 ◽  
Author(s):  
A. SAJID ◽  
G. MURTAZA ◽  
A. H. RESHAK

We hereby are reporting the transition pressure at which lithium fluoride ( LiF ) compound transforms from direct band gap to indirect band gap insulator on the basis of FP-LAPW calculations. The fundamental band gap of LiF compound suffers direct to indirect transition at a pressure of 70 GPa. The study of the pressure effect on the optical properties e.g. dielectric function, reflectivity, refractive index and optical conductivity of LiF in the pressure between 0–100 GPa, shows that this pressure range is very critical for LiF compound as there are significant changes in the optical properties of this compound.


2017 ◽  
Vol 42 (3) ◽  
pp. 244-250 ◽  
Author(s):  
Mohammad Reza Elahifard ◽  
Reza Vatan Meidanshahi

Ni-doped TiO2 and Ag-deposited@Ni-doped TiO2 photocatalysts were prepared using the co-precipitation technique and characterised using X-ray powder diffraction, scanning electron microscopy and Brunauer–Emmett-Teller analysis. Our results confirmed the presence of Ni atoms in the TiO2 bulk structure and Ag° metal particles deposited on the surface. The Ni impurity generates defect midgap states in the TiO2 band structure, providing visible light (VL) absorption, which are responsible for photocatalytic activity under VL conditions. Against this advantage, Ni changes the indirect band gap of pure anatase to the direct band gap which may dramatically suppress the photocatalytic activity of Ni-doped TiO2. Moreover, Ni may provide a centre of electron–hole (e–h) recombination which enhances the negative effect of Ni impurity on TiO2 photo-efficiency. These drawbacks were overcome by deposition of Ag° on the Ni-doped TiO2 which sinks the photo-excited electrons, quenching e–h recombination. This improvement yields three times more photo-efficiency in the decolourisation of Acid Blue 92. Although Ag@Ni-doped anatase shows a higher adsorption constant ( Kads) than Ag@Ni-doped rutile, both catalysts surprisingly present the same rate constant ( k).


Nanoscale ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 4001-4007 ◽  
Author(s):  
Paribesh Acharyya ◽  
Provas Pal ◽  
Pralok K. Samanta ◽  
Arka Sarkar ◽  
Swapan K. Pati ◽  
...  

The origin of the luminescence properties of CsPb2Br5 is ascribed to the presence of different amorphous lead bromide amine complexes.


2016 ◽  
pp. 3546-3550
Author(s):  
Maheshwar Sharon ◽  
S. S. Kawale ◽  
Rakesh Afre ◽  
Madhuri Sharon ◽  
C. H. Bhosale

Thin film of carbon was synthesized from camphor (C10H16O) by CVD technique in hydrogen atmosphere. For the first time it is confirmed the presence of almost zero indirect band gap in addition to its direct band gap.. Carrier concentration with intrinsic carbon is found to be around 1021 n/cm3. It is suggested that unless the zero indirect band gap is  increased carbon thin film   cannot be used for making a p:n junction. XRD, Raman and SEM analysis are performed.


Sign in / Sign up

Export Citation Format

Share Document