scholarly journals Effects of mis-alignment between dispersal traits and landscape structure on dispersal success in fragmented landscapes

2019 ◽  
Vol 6 (1) ◽  
pp. 181702 ◽  
Author(s):  
Justine L. Atkins ◽  
George L. W. Perry ◽  
Todd E. Dennis

Dispersal is fundamental to population dynamics and hence extinction risk. The dispersal success of animals depends on the biophysical structure of their environments and their biological traits; however, comparatively little is known about how evolutionary trade-offs among suites of biological traits affect dispersal potential. We developed a spatially explicit agent-based simulation model to evaluate the influence of trade-offs among a suite of biological traits on the dispersal success of vagile animals in fragmented landscapes. We specifically chose traits known to influence dispersal success: speed of movement, perceptual range, risk of predation, need to forage during dispersal, and amount of suitable habitat required for successful settlement in a patch. Using the metric of relative dispersal success rate, we assessed how the costs and benefits of evolutionary investment in these biological traits varied with landscape structure. In heterogeneous environments with low habitat availability and scattered habitat patches, individuals with more equal allocation across the trait spectrum dispersed most successfully. Our analyses suggest that the dispersal success of animals in heterogeneous environments is highly dependent on hierarchical interactions between trait trade-offs and the geometric configurations of the habitat patches in the landscapes through which they disperse. In an applied sense, our results indicate potential for ecological mis-alignment between species' evolved suites of dispersal-related traits and altered environmental conditions as a result of rapid global change. In many cases identifying the processes that shape patterns of animal dispersal, and the consequences of abiotic changes for these processes, will require consideration of complex relationships among a range of organism-specific and environmental factors.

2021 ◽  
Vol 288 (1961) ◽  
Author(s):  
Carl Tamario ◽  
Erik Degerman ◽  
Daniela Polic ◽  
Petter Tibblin ◽  
Anders Forsman

Ecological theory postulates that the size and isolation of habitat patches impact the colonization/extinction dynamics that determine community species richness and population persistence. Given the key role of lotic habitats for life-history completion in rheophilic fish, evaluating how the distribution of swift-flowing habitats affects the abundance and dynamics of subpopulations is essential. Using extensive electrofishing data, we show that merging island biogeography with meta-population theory, where lotic habitats are considered as islands in a lentic matrix, can explain spatio-temporal variation in occurrence and density of brown trout ( Salmo trutta ). Subpopulations in larger and less isolated lotic habitat patches had higher average densities and smaller between-year density fluctuations. Larger lotic habitat patches also had a lower predicted risk of excessive zero-catches, indicative of lower extinction risk. Trout density further increased with distance from the edge of adjacent lentic habitats with predator ( Esox lucius ) presence, suggesting that edge- and matrix-related mortality contributes to the observed patterns. These results can inform the prioritization of sites for habitat restoration, dam removal and reintroduction by highlighting the role of suitable habitat size and connectivity in population abundance and stability for riverine fish populations.


2021 ◽  
Author(s):  
Anik Dutta ◽  
Fanny E. Hartmann ◽  
Carolina Sardinha Francisco ◽  
Bruce A. McDonald ◽  
Daniel Croll

AbstractThe adaptive potential of pathogens in novel or heterogeneous environments underpins the risk of disease epidemics. Antagonistic pleiotropy or differential resource allocation among life-history traits can constrain pathogen adaptation. However, we lack understanding of how the genetic architecture of individual traits can generate trade-offs. Here, we report a large-scale study based on 145 global strains of the fungal wheat pathogen Zymoseptoria tritici from four continents. We measured 50 life-history traits, including virulence and reproduction on 12 different wheat hosts and growth responses to several abiotic stressors. To elucidate the genetic basis of adaptation, we used genome-wide association mapping coupled with genetic correlation analyses. We show that most traits are governed by polygenic architectures and are highly heritable suggesting that adaptation proceeds mainly through allele frequency shifts at many loci. We identified negative genetic correlations among traits related to host colonization and survival in stressful environments. Such genetic constraints indicate that pleiotropic effects could limit the pathogen’s ability to cause host damage. In contrast, adaptation to abiotic stress factors was likely facilitated by synergistic pleiotropy. Our study illustrates how comprehensive mapping of life-history trait architectures across diverse environments allows to predict evolutionary trajectories of pathogens confronted with environmental perturbations.


2018 ◽  
Vol 34 (7) ◽  
pp. 1525-1545 ◽  
Author(s):  
Cristina Herrero-Jáuregui ◽  
Cecilia Arnaiz-Schmitz ◽  
Lorena Herrera ◽  
Simon M. Smart ◽  
Carlos Montes ◽  
...  

2020 ◽  
Vol 21 (8) ◽  
Author(s):  
Iyan Robiansyah ◽  
Wita Wardani

Abstract. Robiansyah I, Wardani W. 2020. Increasing accuracy: The advantage of using open access species occurrence database in the Red List assessment. Biodiversitas 21: 3658-3664. IUCN Red List is the most widely used instrument to assess and advise the extinction risk of a species. One of the criteria used in IUCN Red List is geographical range of the species assessed (criterion B) in the form of extent of occurrence (EOO) and/or area of occupancy (AOO). While this criterion is presumed to be the easiest to be completed as it is based mainly on species occurrence data, there are some assessments that failed to maximize freely available databases. Here, we reassessed the conservation status of Cibotium arachnoideum, a tree fern distributed in Sumatra and Borneo. This species was previously assessed by Praptosuwiryo (2020, Biodiversitas 21 (4): 1379-1384) which classified the species as Endangered (EN) under criteria B2ab(i,ii,iii); C2a(ii). Using additional data from herbarium specimens recorded in the Global Biodiversity Information Facility (GBIF) website and from peer-reviewed scientific papers, in the present paper we show that C. arachnoideum has a larger extent of occurrence (EOO) and area of occupancy (AOO), more locations and different conservation status compared to those in Praptosuwiryo (2020). Our results are supported by the predicted suitable habitat map of C. arachnoideum produced by MaxEnt modelling method. Based on our assessment, we propose the category of Vulnerable (VU) C2a(i) as the global conservation status for C. arachnoideum. Our study implies the advantage of using open access databases to increase the accuracy of extinction risk assessment under the IUCN Red List criteria in regions like Indonesia, where adequate taxonomical information is not always readily available.


2016 ◽  
Vol 283 (1825) ◽  
pp. 20152772 ◽  
Author(s):  
Eric S. Abelson

Increases in relative encephalization (RE), brain size after controlling for body size, comes at a great metabolic cost and is correlated with a host of cognitive traits, from the ability to count objects to higher rates of innovation. Despite many studies examining the implications and trade-offs accompanying increased RE, the relationship between mammalian extinction risk and RE is unknown. I examine whether mammals with larger levels of RE are more or less likely to be at risk of endangerment than less-encephalized species. I find that extant species with large levels of encephalization are at greater risk of endangerment, with this effect being strongest in species with small body sizes. These results suggest that RE could be a valuable asset in estimating extinction vulnerability. Additionally, these findings suggest that the cost–benefit trade-off of RE is different in large-bodied species when compared with small-bodied species.


2011 ◽  
Vol 366 (1577) ◽  
pp. 2577-2586 ◽  
Author(s):  
Ben Collen ◽  
Louise McRae ◽  
Stefanie Deinet ◽  
Adriana De Palma ◽  
Tharsila Carranza ◽  
...  

Global species extinction typically represents the endpoint in a long sequence of population declines and local extinctions. In comparative studies of extinction risk of contemporary mammalian species, there appear to be some universal traits that may predispose taxa to an elevated risk of extinction. In local population-level studies, there are limited insights into the process of population decline and extinction. Moreover, there is still little appreciation of how local processes scale up to global patterns. Advancing the understanding of factors which predispose populations to rapid declines will benefit proactive conservation and may allow us to target at-risk populations as well as at-risk species. Here, we take mammalian population trend data from the largest repository of population abundance trends, and combine it with the PanTHERIA database on mammal traits to answer the question: what factors can be used to predict decline in mammalian abundance? We find in general that environmental variables are better determinants of cross-species population-level decline than intrinsic biological traits. For effective conservation, we must not only describe which species are at risk and why, but also prescribe ways to counteract this.


1987 ◽  
Vol 65 (4) ◽  
pp. 803-811 ◽  
Author(s):  
Lawrence M. Dill

It is virtually impossible to predict the next 25 years of research in aquatic ecology and behaviour with any accuracy. However, by identifying those areas that are the current frontiers of the discipline it is possible to guess at the most likely research developments over the next decade. From my own biased perspective, the research programme most likely to be productive in the near future is that of behavioural ecology, which studies, among other things, animal decision making in an ecological context. I focus on situations in which animals must make decisions under conflicting objectives, e.g., to simultaneously maximize net energy intake while minimizing risk of predation. New data on guppies (Poecilia reticulata) are presented and the recent literature is reviewed to support the notion that animals in such situations behave so as to maximize fitness. Habitat choices, ontogenetic habitat shifts, and the phenomena of vertical migration and downstream drift are beginning to be considered in this general evolutionary framework, with novel results, and this trend will undoubtedly continue. Extension of the logic of trade-offs to the community level leads to a number of new insights about the processes that shape community structure, and affirms the need for aquatic ecologists of the future to have a thorough understanding of animal behaviour, and a working knowledge of such tools of evolutionary ecology as optimality reasoning and game theory.


Sign in / Sign up

Export Citation Format

Share Document