scholarly journals The neuroscience of Romeo and Juliet : an fMRI study of acting

2019 ◽  
Vol 6 (3) ◽  
pp. 181908 ◽  
Author(s):  
Steven Brown ◽  
Peter Cockett ◽  
Ye Yuan

The current study represents a first attempt at examining the neural basis of dramatic acting. While all people play multiple roles in daily life—for example, ‘spouse' or ‘employee'—these roles are all facets of the ‘self' and thus of the first-person (1P) perspective. Compared to such everyday role playing, actors are required to portray other people and to adopt their gestures, emotions and behaviours. Consequently, actors must think and behave not as themselves but as the characters they are pretending to be. In other words, they have to assume a ‘fictional first-person' (Fic1P) perspective. In this functional MRI study, we sought to identify brain regions preferentially activated when actors adopt a Fic1P perspective during dramatic role playing. In the scanner, university-trained actors responded to a series of hypothetical questions from either their own 1P perspective or from that of Romeo (male participants) or Juliet (female participants) from Shakespeare's drama. Compared to responding as oneself, responding in character produced global reductions in brain activity and, particularly, deactivations in the cortical midline network of the frontal lobe, including the dorsomedial and ventromedial prefrontal cortices. Thus, portraying a character through acting seems to be a deactivation-driven process, perhaps representing a ‘loss of self'.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Toshio Tsuji ◽  
Fumiya Arikuni ◽  
Takafumi Sasaoka ◽  
Shin Suyama ◽  
Takashi Akiyoshi ◽  
...  

AbstractBrain activity associated with pain perception has been revealed by numerous PET and fMRI studies over the past few decades. These findings helped to establish the concept of the pain matrix, which is the distributed brain networks that demonstrate pain-specific cortical activities. We previously found that peripheral arterial stiffness $${\beta }_{\text{art}}$$ β art responds to pain intensity, which is estimated from electrocardiography, continuous sphygmomanometer, and photo-plethysmography. However, it remains unclear whether and to what extent $${\beta }_{\text{art}}$$ β art aligns with pain matrix brain activity. In this fMRI study, 22 participants received different intensities of pain stimuli. We identified brain regions in which the blood oxygen level-dependent signal covaried with $${\beta }_{\text{art}}$$ β art using parametric modulation analysis. Among the identified brain regions, the lateral and medial prefrontal cortex and ventral and dorsal anterior cingulate cortex were consistent with the pain matrix. We found moderate correlations between the average activities in these regions and $${\beta }_{\text{art}}$$ β art (r = 0.47, p < 0.001). $${\beta }_{\text{art}}$$ β art was also significantly correlated with self-reported pain intensity (r = 0.44, p < 0.001) and applied pain intensity (r = 0.43, p < 0.001). Our results indicate that $${\beta }_{\text{art}}$$ β art is positively correlated with pain-related brain activity and subjective pain intensity. This study may thus represent a basis for adopting peripheral arterial stiffness as an objective pain evaluation metric.


2021 ◽  
pp. 1-29
Author(s):  
Kangyu Jin ◽  
Zhe Shen ◽  
Guoxun Feng ◽  
Zhiyong Zhao ◽  
Jing Lu ◽  
...  

Abstract Objective: A few former studies suggested there are partial overlaps in abnormal brain structure and cognitive function between Hypochondriasis (HS) and schizophrenia (SZ). But their differences in brain activity and cognitive function were unclear. Methods: 21 HS patients, 23 SZ patients, and 24 healthy controls (HC) underwent Resting-state functional magnetic resonance imaging (rs-fMRI) with the regional homogeneity analysis (ReHo), subsequently exploring the relationship between ReHo value and cognitive functions. The support vector machines (SVM) were used on effectiveness evaluation of ReHo for differentiating HS from SZ. Results: Compared with HC, HS showed significantly increased ReHo values in right middle temporal gyrus (MTG), left inferior parietal lobe (IPL) and right fusiform gyrus (FG), while SZ showed increased ReHo in left insula, decreased ReHo values in right paracentral lobule. Additionally, HS showed significantly higher ReHo values in FG, MTG and left paracentral lobule but lower in insula than SZ. The higher ReHo values in insula were associated with worse performance in MCCB in HS group. SVM analysis showed a combination of the ReHo values in insula and FG was able to satisfactorily distinguish the HS and SZ patients. Conclusion: our results suggested the altered default mode network (DMN), of which abnormal spontaneous neural activity occurs in multiple brain regions, might play a key role in the pathogenesis of HS, and the resting-state alterations of insula closely related to cognitive dysfunction in HS. Furthermore, the combination of the ReHo in FG and insula was a relatively ideal indicator to distinguish HS from SZ.


2000 ◽  
Vol 83 (5) ◽  
pp. 3133-3139 ◽  
Author(s):  
Vincent P. Clark ◽  
Sean Fannon ◽  
Song Lai ◽  
Randall Benson ◽  
Lance Bauer

Previous studies have found that the P300 or P3 event-related potential (ERP) component is useful in the diagnosis and treatment of many disorders that influence CNS function. However, the anatomic locations of brain regions involved in this response are not precisely known. In the present event-related functional magnetic resonance imaging (fMRI) study, methods of stimulus presentation, data acquisition, and data analysis were optimized for the detection of brain activity in response to stimuli presented in the three-stimulus oddball task. This paradigm involves the interleaved, pseudorandom presentation of single block-letter target and distractor stimuli that previously were found to generate the P3b and P3a ERP subcomponents, respectively, and frequent standard stimuli. Target stimuli evoked fMRI signal increases in multiple brain regions including the thalamus, the bilateral cerebellum, and the occipital-temporal cortex as well as bilateral superior, medial, inferior frontal, inferior parietal, superior temporal, precentral, postcentral, cingulate, insular, left middle temporal, and right middle frontal gyri. Distractor stimuli evoked an fMRI signal change bilaterally in inferior anterior cingulate, medial frontal, inferior frontal, and right superior frontal gyri, with additional activity in bilateral inferior parietal lobules, lateral cerebellar hemispheres and vermis, and left fusiform, middle occipital, and superior temporal gyri. Significant variation in the amplitude and polarity of distractor-evoked activity was observed across stimulus repetitions. No overlap was observed between target- and distractor-evoked activity. These event-related fMRI results shed light on the anatomy of responses to target and distractor stimuli that have proven useful in many ERP studies of healthy and clinically impaired populations.


2021 ◽  
Author(s):  
Jimmy Y. Zhong

Over the past two decades, many neuroimaging studies have attempted uncover the brain regions and networks involved in path integration and identify the underlying neurocognitive mechanisms. Although these studies made inroads into the neural basis of path integration, they have yet to offer a full disclosure of the functional specialization of the brain regions supporting path integration. In this paper, I reviewed notable neuroscientific studies on visual path integration in humans, identified the commonalities and discrepancies in their findings, and incorporated fresh insights from recent path integration studies. Specifically, this paper presented neuroscientific studies performed with virtual renditions of the triangle/path completion task and addressed whether or not the hippocampus is necessary for human path integration. Based on studies that showed evidence supporting and negating the involvement of the hippocampal formation in path integration, this paper introduces the proposal that the use of different path integration strategies may determine the extent to which the hippocampus and entorhinal cortex are engaged during path integration. To this end, recent studies that investigated the impact of different path integration strategies on behavioral performance and functional brain activity were discussed. Methodological concerns were raised with feasible recommendations for improving the experimental design of future strategy-related path integration studies, which can cover cognitive neuroscience research on age-related differences in the role of the hippocampal formation in path integration and Bayesian modelling of the interaction between landmark and self-motion cues. The practical value of investigating different path integration strategies was also discussed briefly from a biomedical perspective.


2018 ◽  
Vol 30 (4) ◽  
pp. 514-525 ◽  
Author(s):  
Sara B. Pillay ◽  
William L. Gross ◽  
William W. Graves ◽  
Colin Humphries ◽  
Diane S. Book ◽  
...  

Understanding the neural basis of recovery from stroke is a major research goal. Many functional neuroimaging studies have identified changes in brain activity in people with aphasia, but it is unclear whether these changes truly support successful performance or merely reflect increased task difficulty. We addressed this problem by examining differences in brain activity associated with correct and incorrect responses on an overt reading task. On the basis of previous proposals that semantic retrieval can assist pronunciation of written words, we hypothesized that recruitment of semantic areas would be greater on successful trials. Participants were 21 patients with left-hemisphere stroke with phonologic retrieval deficits. They read words aloud during an event-related fMRI paradigm. BOLD signals obtained during correct and incorrect trials were contrasted to highlight brain activity specific to successful trials. Successful word reading was associated with higher BOLD signal in the left angular gyrus. In contrast, BOLD signal in bilateral posterior inferior frontal cortex, SMA, and anterior cingulate cortex was greater on incorrect trials. These data show for the first time the brain regions where neural activity is correlated specifically with successful performance in people with aphasia. The angular gyrus is a key node in the semantic network, consistent with the hypothesis that additional recruitment of the semantic system contributes to successful word production when phonologic retrieval is impaired. Higher activity in other brain regions during incorrect trials likely reflects secondary engagement of attention, working memory, and error monitoring processes when phonologic retrieval is unsuccessful.


2011 ◽  
Vol 366 (1571) ◽  
pp. 1684-1701 ◽  
Author(s):  
Andrew J. Calder ◽  
Michael Ewbank ◽  
Luca Passamonti

Cognitive research has long been aware of the relationship between individual differences in personality and performance on behavioural tasks. However, within the field of cognitive neuroscience, the way in which such differences manifest at a neural level has received relatively little attention. We review recent research addressing the relationship between personality traits and the neural response to viewing facial signals of emotion. In one section, we discuss work demonstrating the relationship between anxiety and the amygdala response to facial signals of threat. A second section considers research showing that individual differences in reward drive (behavioural activation system), a trait linked to aggression, influence the neural responsivity and connectivity between brain regions implicated in aggression when viewing facial signals of anger. Finally, we address recent criticisms of the correlational approach to fMRI analyses and conclude that when used appropriately, analyses examining the relationship between personality and brain activity provide a useful tool for understanding the neural basis of facial expression processing and emotion processing in general.


2018 ◽  
Vol 29 (9) ◽  
pp. 4006-4016 ◽  
Author(s):  
Tomi Karjalainen ◽  
Kerttu Seppälä ◽  
Enrico Glerean ◽  
Henry K Karlsson ◽  
Juha M Lahnakoski ◽  
...  

Abstract Emotions can be characterized by dimensions of arousal and valence (pleasantness). While the functional brain bases of emotional arousal and valence have been actively investigated, the neuromolecular underpinnings remain poorly understood. We tested whether the opioid and dopamine systems involved in reward and motivational processes would be associated with emotional arousal and valence. We used in vivo positron emission tomography to quantify μ-opioid receptor and type 2 dopamine receptor (MOR and D2R, respectively) availability in brains of 35 healthy adult females. During subsequent functional magnetic resonance imaging carried out to monitor hemodynamic activity, the subjects viewed movie scenes of varying emotional content. Arousal and valence were associated with hemodynamic activity in brain regions involved in emotional processing, including amygdala, thalamus, and superior temporal sulcus. Cerebral MOR availability correlated negatively with the hemodynamic responses to arousing scenes in amygdala, hippocampus, thalamus, and hypothalamus, whereas no positive correlations were observed in any brain region. D2R availability—here reliably quantified only in striatum—was not associated with either arousal or valence. These results suggest that emotional arousal is regulated by the MOR system, and that cerebral MOR availability influences brain activity elicited by arousing stimuli.


2010 ◽  
Vol 22 (8) ◽  
pp. 1701-1713 ◽  
Author(s):  
Arnaud D'Argembeau ◽  
David Stawarczyk ◽  
Steve Majerus ◽  
Fabienne Collette ◽  
Martial Van der Linden ◽  
...  

Episodic future thinking allows humans to mentally simulate virtually infinite future possibilities, yet this device is fundamentally goal-directed and should not be equated with fantasizing or wishful thinking. The purpose of this fMRI study was to investigate the neural basis of such goal-directed processing during future-event simulation. Participants were scanned while they imagined future events that were related to their personal goals (personal future events) and future events that were plausible but unrelated to their personal goals (nonpersonal future events). Results showed that imaging personal future events elicited stronger activation in ventral medial prefrontal cortex (MPFC) and posterior cingulate cortex (PCC) compared to imaging nonpersonal future events. Moreover, these brain activations overlapped with activations elicited by a second task that assessed semantic self-knowledge (i.e., making judgments on one's own personality traits), suggesting that ventral MPFC and PCC mediate self-referential processing across different functional domains. It is suggested that these brain regions may support a collection of processes that evaluate, code, and contextualize the relevance of mental representations with regard to personal goals. The implications of these findings for the understanding of the function instantiated by the default network of the brain are also discussed.


2004 ◽  
Vol 16 (5) ◽  
pp. 727-741 ◽  
Author(s):  
Anja Ischebeck ◽  
Peter Indefrey ◽  
Nobuo Usui ◽  
Izuru Nose ◽  
Frauke Hellwig ◽  
...  

In order to separate the cognitive processes associated with phonological encoding and the use of a visual word form lexicon in reading, it is desirable to compare the processing of words presented in a visually familiar form with words in a visually unfamiliar form. Japanese Kana orthography offers this possibility. Two phonologically equivalent but visually dissimilar syllabaries allow the writing of, for example, foreign loanwords in two ways, only one of which is visually familiar. Familiarly written words, unfamiliarly written words, and pseudowords were presented in both Kana syllabaries (yielding six conditions in total) to participants during an fMRI measurement with a silent articulation task (Experiment 1) and a phonological lexical decision task (Experiment 2) using an event-related design. Consistent over two experimental tasks, the three different stimulus types (familiar, unfamiliar, and pseudoword) were found to activate selectively different brain regions previously associated with phonological encoding and word retrieval or meaning. Compatible with the predictions of the dual-route model for reading, pseudowords and visually unfamiliar words, which have to be read using phonological assembly, caused an increase in brain activity in left inferior frontal regions (BA 44/47), as compared to visually familiar words. Visually familiar and unfamiliar words were found to activate a range of areas associated with lexico-semantic processing more strongly than pseudowords, such as the left and right temporo-parietal region (BA 39/40), a region in the left middle/inferior temporal gyrus (BA 20/21), and the posterior cingulate (BA 31).


2020 ◽  
Vol 14 ◽  
Author(s):  
Junling Gao ◽  
Stavros Skouras ◽  
Hang Kin Leung ◽  
Bonnie Wai Yan Wu ◽  
Huijun Wu ◽  
...  

IntroductionDuring hard times, religious chanting/praying is widely practiced to cope with negative or stressful emotions. While the underlying neural mechanism has not been investigated to a sufficient extent. A previous event-related potential study showed that religious chanting could significantly diminish the late-positive potential induced by negative stimuli. However, the regulatory role of subcortical brain regions, especially the amygdala, in this process remains unclear. This multi-modal MRI study aimed to further clarify the neural mechanism underlying the effectiveness of religious chanting for emotion regulation.MethodologyTwenty-one participants were recruited for a multi-modal MRI study. Their age range was 40–52 years, 11 were female and all participants had at least 1 year of experience in religious chanting. The participants were asked to view neutral/fearful pictures while practicing religious chanting (i.e., chanting the name of Buddha Amitābha), non-religious chanting (i.e., chanting the name of Santa Claus), or no chanting. A 3.0 T Philips MRI scanner was used to collect the data and SPM12 was used to analyze the imaging data. Voxel-based morphometry (VBM) was used to explore the potential hemispheric asymmetries in practitioners.ResultsCompared to non-religious chanting and no chanting, higher brain activity was observed in several brain regions when participants performed religious chanting while viewing fearful images. These brain regions included the fusiform gyrus, left parietal lobule, and prefrontal cortex, as well as subcortical regions such as the amygdala, thalamus, and midbrain. Importantly, significantly more activity was observed in the left than in the right amygdala during religious chanting. VBM showed hemispheric asymmetries, mainly in the thalamus, putamen, hippocampus, amygdala, and cerebellum; areas related to skill learning and biased memory formation.ConclusionThis preliminary study showed that repetitive religious chanting may induce strong brain activity, especially in response to stimuli with negative valence. Practicing religious chanting may structurally lateralize a network of brain areas involved in biased memory formation. These functional and structural results suggest that religious chanting helps to form a positive schema to counterbalance negative emotions. Future randomized control studies are necessary to confirm the neural mechanism related to religious chanting in coping with stress and negative emotions.


Sign in / Sign up

Export Citation Format

Share Document