scholarly journals Effects of curing condition and particle size of aggregate on the expansion and microstructure of dolomitic aggregates cured in TMAH solution

2019 ◽  
Vol 6 (4) ◽  
pp. 190044
Author(s):  
Bin Yang ◽  
Xiaoxiao Chen ◽  
Min Deng

In this paper, the modified microbars prepared by dolomitic aggregates with three kinds of particle size and self-made cement without K + and Na + were cured in 1 and 2 N tetramethyl ammonium hydroxide (TMAH) solution at 20°C, 60°C and 80°C, respectively. TMAH was used as curing solution to exclude the expansion contribution of alkali–silica reaction. Effects of the concentration of TMAH solution, curing temperature and aggregate grain size on the expansion of dolomitic aggregates were systematically investigated to determine the expansion characteristics only caused by alkali–carbonate reaction (ACR). Expansion of modified microbars cured in TMAH solution was measured. The porosities of original and reacted aggregates were also measured. Microstructural studies were carried out by scanning electron microscopy (SEM) and thermo-gravimetric (TG) analysis. The results showed that the aggregate grain size and curing temperature can influence the expansion of modified microbars significantly. When the modified microbars prepared by aggregates with 2.5–5 mm grain size and cured in 1 N TMAH solution at 80°C, the samples exhibited obvious expansion only caused by ACR, which is beneficial to detect the ACR reactivity of dolomitic rocks exclusively in concrete engineering. Based on the pore structure analysis, there was a slight increase (13%) in porosities of aggregates cured for 140 days at 80°C. Rod-like brucite crystals formed in the process of ACR were also found in TG analysis and SEM images.

2012 ◽  
Vol 15 (5) ◽  
pp. H141 ◽  
Author(s):  
T. Yang ◽  
C. Zhao ◽  
G. B. Xu ◽  
Q. X. Xu ◽  
J. F. Li ◽  
...  

2014 ◽  
Vol 809-810 ◽  
pp. 213-217
Author(s):  
Nan Wang ◽  
Li Rong Deng ◽  
Xiao Gang Wang ◽  
Shu He Lu

The distributed processing of β-SiC submicron powders were carried out by tetramethyl ammonium hydroxide (TMAH). The effects of dispersant on the dispersion stability of the β-SiC powders were investigated by the particle size, flow characteristics, morphology and other physical properties of the powder before and after dispersed treatment. The results show that the best dispersing state of SiC is obtained by using the ultrasonic 7mins. In these conditions, the suspension solid content of β-SiC is 8%, and the dosage of TMAH is 8wt.%. An optimum amount of TMAH is proved as 8wt.% when the solid content is kept as 8wt.%. The powder particle size has been reduced from 0.73μm to 0.45μm, and its flowability has improved significantly after low temperature drying. The dispersed powder has small particle size, uniform distribution and excellent dispersion stability.


2017 ◽  
Vol 139 (6) ◽  
Author(s):  
Khalida Akhtar ◽  
Hina Khalid ◽  
Ikram Ul Haq ◽  
Naila Zubair ◽  
Zia Ullah Khan ◽  
...  

Uniform nanoparticles of cobalt oxide precursors were prepared by the chemical precipitation in which the headspace vapors of ammonium hydroxide solution of known concentration were allowed to bubble through the aqueous solutions of cobalt sulfate, containing appropriate amount of the nonionic surfactant, octylphenoxy poly ethoxy ethanol. Scanning electron microscope (SEM) images showed that uniformity in particle size was dependent upon the applied precipitation conditions. Extensive optimization was therefore performed for the attainment of uniformity in particle size and shape. The amorphous precursor was transformed into crystalline Co3O4 as confirmed by X-ray diffractometry. These particles, with isoelectric point (IEP) at pH ∼ 8.4, were then employed as reinforcement additive for strengthening the electrodeposited nickel matrix. Effect of various parameters, i.e., stirring rate, applied current density, and temperature, was studied on the amount of the codeposited Co3O4 particles in the nanocomposite coatings (Ni–Co3O4) during the electrodeposition process. pH of the coating mixtures was kept below IEP value of Co3O4 so that the latter particles carried net positive surface charge. The coated surfaces were subjected to various tests, i.e., microhardness, wear/friction, and corrosion. Results revealed that irrespective of the amount of the embedded Co3O4 particles, nanocomposite coatings demonstrated superior performance as compared to pure nickel coatings.


Minerals ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 714 ◽  
Author(s):  
Evangelos Petrakis ◽  
Vasiliki Karmali ◽  
Georgios Bartzas ◽  
Konstantinos Komnitsas

This study aims to model grinding of a Polish ferronickel slag and evaluate the particle size distributions (PSDs) of the products obtained after different grinding times. Then, selected products were alkali activated in order to investigate the effect of particle size on the compressive strength of the produced alkali activated materials (AAMs). Other parameters affecting alkali activation, i.e., temperature, curing, and ageing time were also examined. Among the different mathematical models used to simulate the particle size distribution, Rosin–Rammler (RR) was found to be the most suitable. When piecewise regression analysis was applied to experimental data it was found that the particle size distribution of the slag products exhibits multifractal character. In addition, grinding of slag exhibits non-first-order behavior and the reduction rate of each size is time dependent. The grinding rate and consequently the grinding efficiency increases when the particle size increases, but drops sharply near zero after prolonged grinding periods. Regarding alkali activation, it is deduced that among the parameters studied, particle size (and the respective specific surface area) of the raw slag product and curing temperature have the most noticeable impact on the compressive strength of the produced AAMs.


2011 ◽  
Vol 2011 ◽  
pp. 1-8 ◽  
Author(s):  
B. M. Praveen ◽  
T. V. Venkatesha

Zn-Fe alloy electrodeposition was carried out in the presence of condensation product 2-{[(1E)-(3,4-dimethoxyphenyl)methylidene]amino}-3-hydroxypropanoic acid formed between veratraldehyde and serine in acid sulphate bath. Hull cell was used for optimizing the operating parameters and bath constituents. During deposition, the potential was shifted towards cathodic direction in the presence of addition agents and brightener. The polarization studies show that deposition taking place in basic bath and optimum bath was 1.08 and 1.15 V, respectively. Current efficiency and throwing power were reached around 85% and 26%, respectively. The SEM images of bright deposit indicated its fine-grained nature and appreciable reduction in the grain size. XRD studies have showed that the grain size of the deposit generated from optimum bath was 16 nm. UV-visible spectroscopic studies confirm the formation of complex between metal ion and brightener.


2007 ◽  
Vol 534-536 ◽  
pp. 1389-1392
Author(s):  
Young Jung Lee ◽  
Baek Hee Lee ◽  
Gil Su Kim ◽  
Kyu Hwan Lee ◽  
Young Do Kim

Magnetic properties of nanostructured materials are affected by the microstructures such as grain size (or particle size), internal strain and crystal structure. Thus, it is necessary to study the synthesis of nanostructured materials to make significant improvements in their magnetic properties. In this study, nanostructured Fe-20at.%Co and Fe-50at.%Co alloy powders were prepared by hydrogen reduction from the two oxide powder mixtures, Fe2O3 and Co3O4. Furthermore, the effect of microstructure on the magnetic properties of hydrogen reduced Fe-Co alloy powders was examined using XRD, SEM, TEM, and VSM.


2021 ◽  
Author(s):  
Zheng Chen ◽  
Siming He ◽  
Tobias Nicollier ◽  
Lorenz Ammann ◽  
Alexandre Badoux ◽  
...  

<p>The Swiss plate geophone (SPG) system is an indirect bedload transport monitoring device that records the acoustic signals generated by bedload particle impacts, with the goal to derive the bedload flux and grain size distribution. Particle drop experiments with quartz spheres in quiescent water in a flume setting were performed to investigate the dynamic signal response of the SPG system impacted by particle-like objects varying in size and impact location. Systematic flume experiments with natural bedload particles in flowing water were conducted to study the effects of impact angle and transport mode (saltating, rolling and sliding) on the SPG signals. For each impact caused by a single particle, the number of signal impulses, the amplitude, the positive area surrounded by the signal envelope, and the centroid frequency were extracted from the raw geophone monitoring data. The finite element method (FEM) was used to construct a virtual model of the SPG system and to determine the propagation characteristics of the numerical stress wave in the material structure. The experimental and numerical results showed a qualitative and partially quantitative agreement in the changes of the signal impulses, the amplitude, and the envelope area with increasing colliding sphere size. The centroid frequencies of the SPG vibrations showed qualitatively similar dependencies with increasing particle size as some field measurements for the coarser part of the investigated range of impact sizes. The effects of variable particle impact velocities and impact locations on the geophone plate were also investigated by drop experiments and compared to FEM simulations. In addition, the signal response for different bedload transport modes and varying impact angles were explored. In summary, the FEM simulations contribute to the understanding of the signal response of the SPG system and the findings in this study may eventually result in improving the bedload grain size classification and transport mode recognition.</p>


Metals ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 712
Author(s):  
Alvaro Aracena ◽  
Andrés Valencia ◽  
Oscar Jerez

In pyrometallurgical processes refining copper, the main source of loss in the conversion stage is from slag. This paper reports on research work treating converter slag containing high percentages of copper (36 wt%) using ammonium hydroxide at room temperature. Variables analyzed are solution pH, agitation, temperature, NH4OH concentration and particle size. Results showed that the hydronium ion resulting from ammonium hydroxide dissociation was the main oxidant of copper compounds in slag, such as CuO, Cu2O and Cu, with the exception of CuFeO2. The particles contain a large amount of microcracks (porosity) in their refractory structure (analyzed by compositional image capture (BSE)). Thus, the diffusion of the leaching solution through the microcracks making contact with the copper oxides would be allowed. Leaching mechanisms were corroborated by X-ray diffraction and scanning electron microscopy analysis. Increasing temperature and NH4OH concentration while decreasing particle size obtained higher copper recoveries, reaching values of 84.8%. Under the same conditions, the main impurity (iron) was minimal (<2%). Solution pH also affected slag leaching. Agitation of the solution positively affected the rate of copper extraction. Leaching kinetics of the leaching solution through the porosity formed in the slag was analyzed under the intraparticle diffusion model. The reaction order was 1.2 with respect to the concentration of ammonium hydroxide and the model was inversely proportional to the square of the particle radius. The activation energy obtained was 42.3 kJ/mol for temperature range 283 to 333 K.


2007 ◽  
Vol 56 (12) ◽  
pp. 1083-1086 ◽  
Author(s):  
Joonoh Moon ◽  
Sanghoon Kim ◽  
Jongbong Lee ◽  
Changhee Lee

Sign in / Sign up

Export Citation Format

Share Document