scholarly journals Brown marmorated stink bug overwintering aggregations are not regulated through vibrational signals during autumn dispersal

2020 ◽  
Vol 7 (11) ◽  
pp. 201371
Author(s):  
Carol L. Bedoya ◽  
Eckehard G. Brockerhoff ◽  
Michael Hayes ◽  
Tracy C. Leskey ◽  
William R. Morrison ◽  
...  

The brown marmorated stink bug, Halyomorpha halys (Heteroptera: Pentatomidae), is regarded as one of the world's most pernicious invasive pest species, as it feeds on a wide range of economically important crops. During the autumn dispersal period, H. halys ultimately moves to potential overwintering sites, such as human-made structures or trees where it will alight and seek out a final overwintering location, often aggregating with other adults. The cues used during this process are unknown, but may involve vibrational signals. We evaluated whether vibrational signals regulate cluster aggregation in H. haly s in overwintering site selection. We collected acoustic data for six weeks during the autumn dispersal period and used it to quantify movement and detect vibrational communication of individuals colonizing overwintering shelters. Both movement and vibrational signal production increased after the second week, reaching their maxima in week four, before decaying again. We found that only males produced vibrations in this context, yet there was no correlation between movement and vibrational signals , which was confirmed through playback experiments. The cues regulating the formation of aggregations remain largely unknown, but vibrations may indicate group size.

Author(s):  
Sarah Petermann ◽  
Sabine Otto ◽  
Gerrit Eichner ◽  
Marc F. Schetelig

AbstractNative to Southeast Asia, the spotted wing drosophila (SWD), Drosophila suzukii Matsumura, rapidly invaded America and Europe in the past 20 years. As a crop pest of soft-skinned fruits with a wide range of host plants, it threatens the fruit industry worldwide, causing enormous economic losses. To control this invasive pest species, an understanding of its population dynamics and structure is necessary. Here, we report the population genetics and development of SWD in Germany from 2017–19 using microsatellite markers over 11 different sample sites. It is the first study that examines SWD’s genetic changes over 3 years compared to multiple international SWD laboratory strains. Results show that SWD populations in Germany are highly homogenous without differences between populations or years, which indicates that populations are well adapted, migrate freely, and multiple invasions from outside Germany either did not take place or are negligible. Such high genetic variability and migration between populations could allow for a fast establishment of the pest species. This is especially problematic with regard to the ongoing spread of this invasive species and could bear a potential for developing pesticide resistance, which could increase the impact of the SWD further in the future.


2020 ◽  
Vol 71 (4) ◽  
pp. 257-272
Author(s):  
Onat Başbay ◽  
Mudar Salimeh ◽  
Eddie John

We review the continuing and extensive spread of Papilio demoleus in south-eastern Turkey and in regions of Turkey and Syria adjacent to the north-eastern Mediterranean. Since the authors documented the arrival of this attractive but potentially destructive papilionid species at coastal areas of Syria in 2019, regular monitoring has confirmed successful overwintering there, as well as in Turkey. As previously indicated, P. demoleus is widely recognized as an invasive pest species in Citrus-growing areas of the world and hence its arrival is of potential economic importance to a region in which citrus is widely grown.


2019 ◽  
Author(s):  
Camiel Doorenweerd ◽  
Michael San Jose ◽  
Norman Barr ◽  
Luc Leblanc ◽  
Daniel Rubinoff

AbstractDistance decay principles predict that species with larger geographic ranges would have greater intraspecific genetic diversity than more restricted species. However, invasive pest species may not follow this prediction, with confounding implications for tracking phenomena including original ranges, invasion pathways and source populations. We sequenced an 815 base-pair section of the COI gene for 441 specimens of Bactrocera correcta, 214 B. zonata and 372 Zeugodacus cucurbitae; three invasive pest fruit fly species with overlapping hostplants. For each species, we explored how many individuals would need to be included in a study to sample the majority of their haplotype diversity. We also tested for phylogeographic signal and used demographic estimators as a proxy for invasion potency. We find contrasting patterns of haplotype diversity amongst the species, where B. zonata has the highest diversity but most haplotypes were represented by singletons; B. correcta has ∼7 dominant haplotypes more evenly distributed; Z. cucurbitae has a single dominant haplotype with closely related singletons in a ‘star-shape’ surrounding it. We discuss how these differing patterns relate to their invasion histories. None of the species showed meaningful phylogeographic patterns, possibly due to gene-flow between areas across their distributions, obscuring or eliminating substructuring.


2012 ◽  
Vol 13 (1) ◽  
pp. 2 ◽  
Author(s):  
Katherine L. Kamminga ◽  
Thomas P. Kuhar ◽  
Adam Wimer ◽  
D. Ames Herbert

The brown marmorated stink bug (BMSB), Halyomorpha halys (Stål), is an invasive pest from China that causes economic damage to field crops, vegetables, and tree fruit. Due to its destructive potential, applications of broad-spectrum insecticides have escalated. Researchers are trying to identify options for controlling BMSB that have less of a negative impact on non-target species. Chitin biosynthesis inhibitors are more selective than the commonly used pyrethroids and organophosphates. They are active on the larval stage of the insect and are reported as having sublethal effects such as reducing adult fecundity. In our studies, bioassays were completed with chitin biosynthesis inhibitors novaluron and diflubenzuron to evaluate the effectiveness of these insecticides on adult mortality, nymphal growth, adult fecundity, and egg hatch. Our data indicate that treatments of novaluron at 362.2 g ai/ha or diflubenzuron at 280.2 g ai/ha effectively controlled BMSB nymphs. However, the insecticides were not effective at reducing egg hatch, adult fecundity, or adult life span. If novaluron or diflubenzuron are used in agriculture for BMSB control, then the nymphal stage should be targeted. Accepted for publication 9 November 2012. Published 12 December 2012.


2019 ◽  
Vol 102 (3) ◽  
pp. 480
Author(s):  
Robert W. Jones ◽  
Carlos Illescas-Riquelme ◽  
Víctor López-Martínez ◽  
Néstor Bautista-Martínez ◽  
Charles W. O'Brien

PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e9564
Author(s):  
Somasundhari Shanmuganandam ◽  
Yiheng Hu ◽  
Tanja Strive ◽  
Benjamin Schwessinger ◽  
Robyn N. Hall

Background European brown hares (Lepus europaeus) and European rabbits (Oryctolagus cuniculus) are invasive pest species in Australia, with rabbits having a substantially larger environmental impact than hares. As their spatial distribution in Australia partially overlaps, we conducted a comparative microbiome study to determine how the composition of gastrointestinal microbiota varies between these species, since this may indicate species differences in diet, physiology, and other internal and external factors. Methods We analysed the faecal microbiome of nine wild hares and twelve wild rabbits from a sympatric periurban reserve in Canberra, Australia, using a 16S rRNA amplicon-based sequencing approach. Additionally, we compared the concordance between results from Illumina and Nanopore sequencing platforms. Results We identified significantly more variation in faecal microbiome composition between individual rabbits compared to hares, despite both species occupying a similar habitat. The faecal microbiome in both species was dominated by the phyla Firmicutes and Bacteroidetes, typical of many vertebrates. Many phyla, including Actinobacteria, Proteobacteria and Patescibacteria, were shared between rabbits and hares. In contrast, bacteria from phylum Verrucomicrobia were present only in rabbits, while phyla Lentisphaerae and Synergistetes were represented only in hares. We did not identify phylum Spirochaetes in Australian hares; this phylum was previously shown to be present at high relative abundance in European hare faecal samples. These differences in the composition of faecal microbiota may be indicative of less discriminate foraging behaviour in rabbits, which in turn may enable them to adapt quicker to new environments, and may reflect the severe environmental impacts that this species has in Australia.


2003 ◽  
Vol 4 (1) ◽  
pp. 19
Author(s):  
Gareth Hughes

The maximum pest limit (MPL) concept was developed as a practical method of implementing quarantine security measures against the import of invasive pest species of plants. The MPL itself is simply a threshold upper limit, above which the pest species in question is deemed capable of establishing a population if imported in a consignment of fruit or vegetables. This limit depends on various biological and ecological characteristics of the pest species in question. Important aspects of implementation relate to how treatment and sampling may be combined to reduce the probability that the MPL will be exceeded. If a specified level of treatment efficacy is required (for example, probit nine level), then choice of an appropriate sample size becomes the main problem for regulatory authorities seeking to maintain quarantine security. Accepted for publication 16 December 2002. Published 13 November 2003.


Sign in / Sign up

Export Citation Format

Share Document