scholarly journals Spatial and temporal genetic variation of Drosophila suzukii in Germany

Author(s):  
Sarah Petermann ◽  
Sabine Otto ◽  
Gerrit Eichner ◽  
Marc F. Schetelig

AbstractNative to Southeast Asia, the spotted wing drosophila (SWD), Drosophila suzukii Matsumura, rapidly invaded America and Europe in the past 20 years. As a crop pest of soft-skinned fruits with a wide range of host plants, it threatens the fruit industry worldwide, causing enormous economic losses. To control this invasive pest species, an understanding of its population dynamics and structure is necessary. Here, we report the population genetics and development of SWD in Germany from 2017–19 using microsatellite markers over 11 different sample sites. It is the first study that examines SWD’s genetic changes over 3 years compared to multiple international SWD laboratory strains. Results show that SWD populations in Germany are highly homogenous without differences between populations or years, which indicates that populations are well adapted, migrate freely, and multiple invasions from outside Germany either did not take place or are negligible. Such high genetic variability and migration between populations could allow for a fast establishment of the pest species. This is especially problematic with regard to the ongoing spread of this invasive species and could bear a potential for developing pesticide resistance, which could increase the impact of the SWD further in the future.

2020 ◽  
Vol 152 (4) ◽  
pp. 490-515 ◽  
Author(s):  
Yvonne Young ◽  
Tristan A.F. Long

AbstractThe characteristics of the juvenile developmental environment of an individual can have many important consequences for their adult reproductive success as it may shape the development and expression of phenotypes that are relevant to the later operation of sexual selection. Drosophila suzukii (Matsumura) (Diptera: Drosophilidae) is an economically important invasive pest species that lays its eggs in many types of soft fruits and potentially experiences large intrapopulation spatial and temporal variation in its nutritional developmental environments. Here, we examine whether the larval nutritional developmental environment influences D. suzukii mate choice, egg production, and offspring performance. Using D. suzukii raised on diets differing in their nutritional quality, we examined mating preferences, fecundity, and offspring survivorship in “no-choice,” “female choice,” and “male choice” reproductive contexts. We found evidence for both adaptive and nonadaptive mate choice behaviours associated with the phenotypes of D. suzukii that had developed in different nutritional environments. These results reveal the complex nature of the relationship between the developmental environment and individual reproductive success in D. suzukii, which has important potential implications for future management plans involving this species.


2020 ◽  
Vol 7 (11) ◽  
pp. 201371
Author(s):  
Carol L. Bedoya ◽  
Eckehard G. Brockerhoff ◽  
Michael Hayes ◽  
Tracy C. Leskey ◽  
William R. Morrison ◽  
...  

The brown marmorated stink bug, Halyomorpha halys (Heteroptera: Pentatomidae), is regarded as one of the world's most pernicious invasive pest species, as it feeds on a wide range of economically important crops. During the autumn dispersal period, H. halys ultimately moves to potential overwintering sites, such as human-made structures or trees where it will alight and seek out a final overwintering location, often aggregating with other adults. The cues used during this process are unknown, but may involve vibrational signals. We evaluated whether vibrational signals regulate cluster aggregation in H. haly s in overwintering site selection. We collected acoustic data for six weeks during the autumn dispersal period and used it to quantify movement and detect vibrational communication of individuals colonizing overwintering shelters. Both movement and vibrational signal production increased after the second week, reaching their maxima in week four, before decaying again. We found that only males produced vibrations in this context, yet there was no correlation between movement and vibrational signals , which was confirmed through playback experiments. The cues regulating the formation of aggregations remain largely unknown, but vibrations may indicate group size.


2016 ◽  
Vol 14 (2) ◽  
pp. e10SC01 ◽  
Author(s):  
Sergio Pérez-Guerrero ◽  
José M. Molina

Drosophila suzukii (Matsumura, 1931) is an invasive pest from South East Asia that was detected for the first time in Southern Europe in 2008. This species can damage a wide range of soft-skinned fruits crops affecting ripening fruits and causing important economic losses. Since the exclusive use of chemical insecticides for controlling D. suzukii may prompt the appearance of resistance and environmental pollution, alternative methods compatible with sustainable management are required. In this study, commercial formulations of powdered sulphur and kaolin were tested as a preventive method applied to blueberry fruits under laboratory conditions. In no-choice assay, powdered sulphur had a significant effect on oviposition and adult emergency with reductions of 76% and 77%, respectively. In addition, sulphur displayed a significant toxicity on males and lethal effect with over 40% adult mortality seven days after exposure. The choice assay confirmed and improved the powdered sulphur effects, with reductions of 98% and 96% in oviposition and adult emergence, respectively. In contrast, kaolin produced no significant reduction in infestation and adult mortality during no-choice and choice assays. These outcomes suggest that preventive use of powdered sulphur could be considered for sustainable control of D. suzukii in some berry crops.


2020 ◽  
Vol 71 (4) ◽  
pp. 257-272
Author(s):  
Onat Başbay ◽  
Mudar Salimeh ◽  
Eddie John

We review the continuing and extensive spread of Papilio demoleus in south-eastern Turkey and in regions of Turkey and Syria adjacent to the north-eastern Mediterranean. Since the authors documented the arrival of this attractive but potentially destructive papilionid species at coastal areas of Syria in 2019, regular monitoring has confirmed successful overwintering there, as well as in Turkey. As previously indicated, P. demoleus is widely recognized as an invasive pest species in Citrus-growing areas of the world and hence its arrival is of potential economic importance to a region in which citrus is widely grown.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Michelle T. Fountain ◽  
Amir Badiee ◽  
Sebastian Hemer ◽  
Alvaro Delgado ◽  
Michael Mangan ◽  
...  

Abstract Spotted wing drosophila, Drosophila suzukii, is a serious invasive pest impacting the production of multiple fruit crops, including soft and stone fruits such as strawberries, raspberries and cherries. Effective control is challenging and reliant on integrated pest management which includes the use of an ever decreasing number of approved insecticides. New means to reduce the impact of this pest that can be integrated into control strategies are urgently required. In many production regions, including the UK, soft fruit are typically grown inside tunnels clad with polyethylene based materials. These can be modified to filter specific wavebands of light. We investigated whether targeted spectral modifications to cladding materials that disrupt insect vision could reduce the incidence of D. suzukii. We present a novel approach that starts from a neuroscientific investigation of insect sensory systems and ends with infield testing of new cladding materials inspired by the biological data. We show D. suzukii are predominantly sensitive to wavelengths below 405 nm (ultraviolet) and above 565 nm (orange & red) and that targeted blocking of lower wavebands (up to 430 nm) using light restricting materials reduces pest populations up to 73% in field trials.


2016 ◽  
Vol 43 (4) ◽  
pp. 324 ◽  
Author(s):  
Supriya Tiwari ◽  
Rüdiger Grote ◽  
Galina Churkina ◽  
Tim Butler

High concentrations of ozone (O3) can have significant impacts on the health and productivity of agricultural and forest ecosystems, leading to significant economic losses. In order to estimate this impact under a wide range of environmental conditions, the mechanisms of O3 impacts on physiological and biochemical processes have been intensively investigated. This includes the impact on stomatal conductance, the formation of reactive oxygen species and their effects on enzymes and membranes, as well as several induced and constitutive defence responses. This review summarises these processes, discusses their importance for O3 damage scenarios and assesses to which degree this knowledge is currently used in ecosystem models which are applied for impact analyses. We found that even in highly sophisticated models, feedbacks affecting regulation, detoxification capacity and vulnerability are generally not considered. This implies that O3 inflicted alterations in carbon and water balances cannot be sufficiently well described to cover immediate plant responses under changing environmental conditions. Therefore, we suggest conceptual models that link the depicted feedbacks to available process-based descriptions of stomatal conductance, photosynthesis and isoprenoid formation, particularly the linkage to isoprenoid models opens up new options for describing biosphere-atmosphere interactions.


2021 ◽  
Author(s):  
Kyle M Lewald ◽  
Antoine Abrieux ◽  
Derek A Wilson ◽  
Yoosook Lee ◽  
William R Conner ◽  
...  

Drosophila suzukii, or spotted-wing drosophila, is now an established pest in many parts of the world, causing significant damage to numerous fruit crop industries. Native to East Asia, D. suzukii infestations started in the United States a decade ago, occupying a wide range of climates. To better understand invasion ecology of this pest, knowledge of past migration events, population structure, and genetic diversity is needed. To improve on previous studies examining genetic structure of D. suzukii, we sequenced whole genomes of 237 individual flies collected across the continental U.S., as well as several representative sites in Europe, Brazil, and Asia, to identify hundreds of thousands of genetic markers for analysis. We analyzed these markers to detect population structure, to reconstruct migration events, and to estimate genetic diversity and differentiation within and among the continents. We observed strong population structure between West and East Coast populations in the U.S., but no evidence of any population structure North to South, suggesting there is no broad-scale adaptations occurring in response to the large differences in regional weather conditions. We also find evidence of repeated migration events from Asia into North America have provided increased levels of genetic diversity, which does not appear to be the case for Brazil or Europe. This large genomic dataset will spur future research into genomic adaptations underlying D. suzukii pest activity and development of novel control methods for this agricultural pest.


2019 ◽  
Author(s):  
Camiel Doorenweerd ◽  
Michael San Jose ◽  
Norman Barr ◽  
Luc Leblanc ◽  
Daniel Rubinoff

AbstractDistance decay principles predict that species with larger geographic ranges would have greater intraspecific genetic diversity than more restricted species. However, invasive pest species may not follow this prediction, with confounding implications for tracking phenomena including original ranges, invasion pathways and source populations. We sequenced an 815 base-pair section of the COI gene for 441 specimens of Bactrocera correcta, 214 B. zonata and 372 Zeugodacus cucurbitae; three invasive pest fruit fly species with overlapping hostplants. For each species, we explored how many individuals would need to be included in a study to sample the majority of their haplotype diversity. We also tested for phylogeographic signal and used demographic estimators as a proxy for invasion potency. We find contrasting patterns of haplotype diversity amongst the species, where B. zonata has the highest diversity but most haplotypes were represented by singletons; B. correcta has ∼7 dominant haplotypes more evenly distributed; Z. cucurbitae has a single dominant haplotype with closely related singletons in a ‘star-shape’ surrounding it. We discuss how these differing patterns relate to their invasion histories. None of the species showed meaningful phylogeographic patterns, possibly due to gene-flow between areas across their distributions, obscuring or eliminating substructuring.


Sign in / Sign up

Export Citation Format

Share Document