scholarly journals Parallel generation of extensive vascular networks with application to an archetypal human kidney model

2021 ◽  
Vol 8 (12) ◽  
Author(s):  
L. F. M. Cury ◽  
G. D. Maso Talou ◽  
M. Younes-Ibrahim ◽  
P. J. Blanco

Given the relevance of the inextricable coupling between microcirculation and physiology, and the relation to organ function and disease progression, the construction of synthetic vascular networks for mathematical modelling and computer simulation is becoming an increasingly broad field of research. Building vascular networks that mimic in vivo morphometry is feasible through algorithms such as constrained constructive optimization (CCO) and variations. Nevertheless, these methods are limited by the maximum number of vessels to be generated due to the whole network update required at each vessel addition. In this work, we propose a CCO-based approach endowed with a domain decomposition strategy to concurrently create vascular networks. The performance of this approach is evaluated by analysing the agreement with the sequentially generated networks and studying the scalability when building vascular networks up to 200 000 vascular segments. Finally, we apply our method to vascularize a highly complex geometry corresponding to the cortex of a prototypical human kidney. The technique presented in this work enables the automatic generation of extensive vascular networks, removing the limitation from previous works. Thus, we can extend vascular networks (e.g. obtained from medical images) to pre-arteriolar level, yielding patient-specific whole-organ vascular models with an unprecedented level of detail.

2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Fanny Oliveira Arcolino ◽  
Agnès Tort Piella ◽  
Elli Papadimitriou ◽  
Benedetta Bussolati ◽  
Daniel J. Antonie ◽  
...  

Urine represents an unlimited source of patient-specific kidney cells that can be harvested noninvasively. Urine derived podocytes and proximal tubule cells have been used to study disease mechanisms and to screen for novel drug therapies in a variety of human kidney disorders. The urinary kidney stem/progenitor cells and extracellular vesicles, instead, might be promising for therapeutic treatments of kidney injury. The greatest advantages of urine as a source of viable cells are the easy collection and less complicated ethical issues. However, extensive characterization andin vivostudies still have to be performed before the clinical use of urine-derived kidney progenitors.


Cells ◽  
2019 ◽  
Vol 8 (9) ◽  
pp. 1043 ◽  
Author(s):  
Phil Jun Kang ◽  
Daryeon Son ◽  
Tae Hee Ko ◽  
Wonjun Hong ◽  
Wonjin Yun ◽  
...  

Human neural stem cells (NSCs) hold enormous promise for neurological disorders, typically requiring their expandable and differentiable properties for regeneration of damaged neural tissues. Despite the therapeutic potential of induced NSCs (iNSCs), a major challenge for clinical feasibility is the presence of integrated transgenes in the host genome, contributing to the risk for undesired genotoxicity and tumorigenesis. Here, we describe the advanced transgene-free generation of iNSCs from human urine-derived cells (HUCs) by combining a cocktail of defined small molecules with self-replicable mRNA delivery. The established iNSCs were completely transgene-free in their cytosol and genome and further resembled human embryonic stem cell-derived NSCs in the morphology, biological characteristics, global gene expression, and potential to differentiate into functional neurons, astrocytes, and oligodendrocytes. Moreover, iNSC colonies were observed within eight days under optimized conditions, and no teratomas formed in vivo, implying the absence of pluripotent cells. This study proposes an approach to generate transplantable iNSCs that can be broadly applied for neurological disorders in a safe, efficient, and patient-specific manner.


2021 ◽  
pp. 155633162199633
Author(s):  
Mehran Ashouri-Sanjani ◽  
Shima Mohammadi-Moghadam ◽  
Parisa Azimi ◽  
Navid Arjmand

Background: Pedicle screw (PS) placement has been widely used in fusion surgeries on the thoracic spine. Achieving cost-effective yet accurate placements through nonradiation techniques remains challenging. Questions/Purposes: Novel noncovering lock-mechanism bilateral vertebra-specific drill guides for PS placement were designed/fabricated, and their accuracy for both nondeformed and deformed thoracic spines was tested. Methods: One nondeformed and 1 severe scoliosis human thoracic spine underwent computed tomographic (CT) scanning, and 2 identical proportions of each were 3-dimensional (3D) printed. Pedicle-specific optimal (no perforation) drilling trajectories were determined on the CT images based on the entry point/orientation/diameter/length of each PS. Vertebra-specific templates were designed and 3D printed, assuring minimal yet firm contacts with the vertebrae through a noncovering lock mechanism. One model of each patient was drilled using the freehand and one using the template guides (96 pedicle drillings). Postoperative CT scans from the models with the inserted PSs were obtained and superimposed on the preoperative planned models to evaluate deviations of the PSs. Results: All templates fitted their corresponding vertebra during the simulated operations. As compared with the freehand approach, PS placement deviations from their preplanned positions were significantly reduced: for the nonscoliosis model, from 2.4 to 0.9 mm for the entry point, 5.0° to 3.3° for the transverse plane angle, 7.1° to 2.2° for the sagittal plane angle, and 8.5° to 4.1° for the 3D angle, improving the success rate from 71.7% to 93.5%. Conclusions: These guides are valuable, as the accurate PS trajectory could be customized preoperatively to match the patients’ unique anatomy. In vivo studies will be required to validate this approach.


2021 ◽  
pp. 1-14
Author(s):  
Noura Hamze ◽  
Lukas Nocker ◽  
Nikolaus Rauch ◽  
Markus Walzthöni ◽  
Matthias Harders ◽  
...  

BACKGROUND: Accurate segmentation of connective soft tissues in medical images is very challenging, hampering the generation of geometric models for bio-mechanical computations. Alternatively, one could predict ligament insertion sites and then approximate the shapes, based on anatomical knowledge and morphological studies. OBJECTIVE: In this work, we describe an integrated framework for automatic modelling of human musculoskeletal ligaments. METHOD: We combine statistical shape modelling with geometric algorithms to automatically identify insertion sites, based on which geometric surface/volume meshes are created. As clinical use case, the framework has been applied to generate models of the forearm interosseous membrane. Ligament insertion sites in the statistical model were defined according to anatomical predictions following a published approach. RESULTS: For evaluation we compared the generated sites, as well as the ligament shapes, to data obtained from a cadaveric study, involving five forearms with 15 ligaments. Our framework permitted the creation of models approximating ligaments’ shapes with good fidelity. However, we found that the statistical model trained with the state-of-the-art prediction of the insertion sites was not always reliable. Average mean square errors as well as Hausdorff distances of the meshes could increase by an order of magnitude, as compared to employing known insertion locations of the cadaveric study. Using those, an average mean square error of 0.59 mm and an average Hausdorff distance of less than 7 mm resulted, for all ligaments. CONCLUSIONS: The presented approach for automatic generation of ligament shapes from insertion points appears to be feasible but the detection of the insertion sites with a SSM is too inaccurate, thus making a patient-specific approach necessary.


2012 ◽  
Vol 43 (3) ◽  
pp. 569-578 ◽  
Author(s):  
Sigmund Eldevik ◽  
Iwona Ondire ◽  
J. Carl Hughes ◽  
Corinna F. Grindle ◽  
Tom Randell ◽  
...  

2015 ◽  
Vol 21 (5) ◽  
pp. 509-517 ◽  
Author(s):  
Ritika R. Chaturvedi ◽  
Kelly R. Stevens ◽  
Ricardo D. Solorzano ◽  
Robert E. Schwartz ◽  
Jeroen Eyckmans ◽  
...  

2017 ◽  
Vol 37 (suppl_1) ◽  
Author(s):  
Qingyu Wang ◽  
Dalin Tang ◽  
Gador Canton ◽  
Jian Guo ◽  
Xiaoya Guo ◽  
...  

It is hypothesized that artery stiffness may be associated with plaque progression. However, in vivo vessel material stiffness follow-up data is lacking in the literature. In vivo 3D multi-contrast and Cine magnetic resonance imaging (MRI) carotid plaque data were acquired from 8 patients with follow-up (18 months) with written informed consent obtained. Cine MRI and 3D thin-layer models were used to determine parameter values of the Mooney-Rivlin models for the 81slices from 16 plaques (2 scans/patient) using our established iterative procedures. Effective Young’s Modulus (YM) values for stretch ratio [1.0,1.3] were calculated for each slice for analysis. Stress-stretch ratio curves from Mooney-Rivlin models for the 16 plaques and 81 slices are given in Fig. 1. Average YM value of the 81 slices was 411kPa. Slice YM values varied from 70 kPa (softest) to 1284 kPa (stiffest), a 1734% difference. Average slice YM values by vessel varied from 109 kPa (softest) to 922 kPa (stiffest), a 746% difference. Location-wise, the maximum slice YM variation rate within a vessel was 306% (139 kPa vs. 564 kPa). Average slice YM variation rate within a vessel for the 16 vessels was 134%. Average variation of YM values from baseline (T1) to follow up (T2) for all patients was 61.0%. The range of the variation of YM values was [-28.4%, 215%]. For progression study, YM increase (YMI=YM T2 -TM T1 ) showed negative correlation with plaque progression measured by wall thickness increase (WTI), (r= -0.6802, p=0.0634). YM T2 showed strong negative correlation with WTI (r= -0.7764, p=0.0235). Correlation between YM T1 and WTI was not significant (r= -0.4353, p= 0.2811). Conclusion In vivo carotid vessel material properties have large variations from patient to patient, along the vessel segment within a patient, and from baseline to follow up. Use of patient-specific, location specific and time-specific material properties could potentially improve the accuracy of model stress/strain calculations.


Sign in / Sign up

Export Citation Format

Share Document