scholarly journals The cataphoresis of suspended particles. Part I.—The equation of cataphoresis

§ 1. The theory of cataphoresis, and of the complementary phenomenon of electrosmosis, is based on the conception of an “ electrical double layer ” at the interface between the two phases whose relative motion is under consideration.* In the original theory, as propounded by Quincke and Helm­holtz, this electrical double layer was regarded as a kind of parallel plate condenser made up of two laminar distributions of electrification, of which one—the so-called “ inner sheet ”—was firmly attached to the rigid phase, while the other—the “ outer sheet ”—resided in the mobile phase ; the separation between the two was considered to be a distance of the order of molecular dimensions. The currently accepted view, initiated by Gouy, differs from that of Helmholtz chiefly in that the outer sheet of the double layer is con­sidered to be a diffuse distribution of electrification—an “ ionic atmosphere ” of the type investigated by Debye and his collaborators in connection with the theory of strong electrolytes. The net electric density in the ionic atmosphere varies continuously from a maximum in the immediate neighbourhood of the fixed inner sheet, to a negligibly small value in the bulk of the liquid, over a distance which is a function of the ionic concentration, and which lies as a rule between molecular dimensions and some thousand micromillimetres. In a deduction which appears to be completely consistent with this more modern view of the double layer, Smoluchowski deduced the expression U = DXζ/4π η (1) for the cataphoretic velocity U ; X is the applied field strength, ζ the potential difference across the double layer, D the dielectric constant and η the viscosity of the medium. The equation is identical with that developed by Helmholtz except for the inclusion of the dielectric constant, but was deduced on a much more general basis, and is claimed by Smoluchowski to be valid for rigid electrically insulating particles of any shape, subject only to the following four restrictions :— 1) That the usual hydrodynamical equations for the motion of a viscous fluid may be assumed to hold both in the bulk of the liquid and within the double layer; (2) That the motion is “stream line motion,” and slow enough for the “inertia terms” in the hydrodynamic equations to be neglected ; (3) That the applied field may be taken as simply superimposed on the field due to the electrical double layer ; and (4) That the thickness of the double layer ( i. e, the distance normal to the interface over which the potential differs appreciably from that in the bulk of the liquid) is small compared with the radius of curvature at any point of the surface.

In Part I of this communication it was shown that, subject to certain restrictions, the cataphoretic velocity of an insulating cylinder placed broadside on to the applied field should conform to Smoluchowski’s equation U = DXζ/4π η , (1) whereas the assumptions made by Hückel* lead to the result U = DXζ/8π η . (2) This conclusion has been investigated by a method depending on the static deflection of a suspended glass fibre, whose diameter is very great compared with the thickness of the electrical double layer. In principle the method derives from that of Billiter, though the modifications and complications introduced in the effect to make it quantitative are so considerable as to render the technique in effect novel.


Author(s):  
W. Ronald Fawcett

In examining the properties of the metal | solution interface, two limiting types of behavior are found, namely, the ideal polarizable interface and the ideally nonpolarizable interface. In the former case, the interface behaves as a capacitor so that charge can be placed on the metal using an external voltage source. This leads to the establishment of an equal and opposite charge on the solution side. The total system in which charge is separated in space is called the electrical double layer and its properties are characterized by electrostatic equilibrium. An electrical double layer exists in general at any interface at which there is a change in dielectric properties. It has an important influence on the structure of the interface and on the kinetics of processes occurring there. The classical example of an ideally polarizable interface is a mercury electrode in an electrolyte solution which does not contain mercury ions, for example, aqueous KCl. The charge on the mercury surface is altered using an external voltage source placed between the polarizable electrode and non-polarizable electrode, for example, a silver | silver chloride electrode in contact with the same solution. Within well-defined limits, the charge can be changed in both the negative and positive directions. When the mercury electrode is positively charged, there is an excess of anions in the solution close to the electrode. The opposite situation occurs when the electrode is negatively charged. An important point of reference is the point of zero charge (PZC), which occurs when the charge on the electrode is exactly zero. The properties of the electrical double layer in solution depend on the nature of the electrolyte and its concentration. In many electrolytes, one or more of the constituent ions are specifically adsorbed at the interface. Specific adsorption implies that the local ionic concentration is determined not just by electrostatic forces but also by specific chemical forces. For example, the larger halide ions are chemisorbed on mercury due to the covalent nature of the interaction between a mercury atom and the anion. Specific adsorption can also result from the hydrophobic nature of an ion.


2020 ◽  
Vol 12 (21) ◽  
pp. 3544
Author(s):  
Xiao Jin ◽  
Wen Yang ◽  
Xiaoqing Gao ◽  
Zhenchao Li

Complex dielectric constant (CDC) of bound water determines the accuracy of the complex dielectric constant of wet soil. According to electrical double-layer structure and dielectric properties, the bound water on clay particle surface is divided into strongly bound water and weakly bound water. Based on this classification, models for the complex dielectric constants of bound water and soil are established taking into consideration factors such as temperature, moisture, texture, and microwave frequency. The results show that the fundamental reason why the complex dielectric constant of bound water is between that of ice and free water is the adsorption force which forms the electrical double-layer structure on the surface of clay particles. Low-concentration cationic solution could exist in free soil water and was found as the reason for the higher salinity and conductivity of free soil water, as compared to the measured soil solution. Results of soil CDC model are in good agreement with measured data across a wide range of microwave frequencies and soil temperature, moisture, and texture. The absolute root mean square error analysis also shows that the soil CDC model in this paper compared to the other models is more accurate.


2019 ◽  
Author(s):  
Divya Bohra ◽  
Jehanzeb Chaudhry ◽  
Thomas Burdyny ◽  
Evgeny Pidko ◽  
wilson smith

<p>The environment of a CO<sub>2</sub> electroreduction (CO<sub>2</sub>ER) catalyst is intimately coupled with the surface reaction energetics and is therefore a critical aspect of the overall system performance. The immediate reaction environment of the electrocatalyst constitutes the electrical double layer (EDL) which extends a few nanometers into the electrolyte and screens the surface charge density. In this study, we resolve the species concentrations and potential profiles in the EDL of a CO<sub>2</sub>ER system by self-consistently solving the migration, diffusion and reaction phenomena using the generalized modified Poisson-Nernst-Planck (GMPNP) equations which include the effect of volume exclusion due to the solvated size of solution species. We demonstrate that the concentration of solvated cations builds at the outer Helmholtz plane (OHP) with increasing applied potential until the steric limit is reached. The formation of the EDL is expected to have important consequences for the transport of the CO<sub>2</sub> molecule to the catalyst surface. The electric field in the EDL diminishes the pH in the first 5 nm from the OHP, with an accumulation of protons and a concomitant depletion of hydroxide ions. This is a considerable departure from the results obtained using reaction-diffusion models where migration is ignored. Finally, we use the GMPNP model to compare the nature of the EDL for different alkali metal cations to show the effect of solvated size and polarization of water on the resultant electric field. Our results establish the significance of the EDL and electrostatic forces in defining the local reaction environment of CO<sub>2</sub> electrocatalysts.</p>


2021 ◽  
pp. 138416
Author(s):  
Sofia B. Davey ◽  
Amanda P. Cameron ◽  
Kenneth G. Latham ◽  
Scott W. Donne

2018 ◽  
Vol 782 ◽  
pp. 21-26
Author(s):  
Takeshi Yabutsuka ◽  
Masaya Yamamoto ◽  
Shigeomi Takai ◽  
Takeshi Yao

We prepared hydroxyapatite (HA) capsules encapsulating maghemite particles. In order to evaluate enzyme immobilization behavior of the HA capsules under alkaline condition, we immobilized five kinds of enzymes with different isoelectric point in carbonate/bicarbonate buffer (CBB, pH 10.0). When the enzymes in CBB were moderately charged, immobilization efficiency on the HA capsules showed the highest value. It was suggested that immobilization efficiency was affected according to both pI of enzyme and pH of the surrounding solution and that enzyme immobilized on the HA capsules by not only electrical double layer interactions but also ion interaction and other interactions.


2007 ◽  
Vol 336-338 ◽  
pp. 377-380 ◽  
Author(s):  
Jian Hong Shen ◽  
Ji Zhou ◽  
Xue Min Cui ◽  
Yue Hui Wang

A series of ferrroelectric-ferromagnetic composites were synthesized from BaTiO3 and NiFe2O4 ferrite by conventional solid-state route. XRD studies indicated that the composites comprised of only two phases, BaTiO3 phase with perovskite structure and NiFe2O4 phase with spinel structure. Frequency dependence of permittivity and permeability were also measured. Experimental results showed that the dielectric constant and initial permeability of these composites could be tunable by varying the composition of composites. Thus, these composites can be used for multilayer chips EMI filters.


Sign in / Sign up

Export Citation Format

Share Document